13,526 research outputs found

    Towards a Universal Wordnet by Learning from Combined Evidenc

    Get PDF
    Lexical databases are invaluable sources of knowledge about words and their meanings, with numerous applications in areas like NLP, IR, and AI. We propose a methodology for the automatic construction of a large-scale multilingual lexical database where words of many languages are hierarchically organized in terms of their meanings and their semantic relations to other words. This resource is bootstrapped from WordNet, a well-known English-language resource. Our approach extends WordNet with around 1.5 million meaning links for 800,000 words in over 200 languages, drawing on evidence extracted from a variety of resources including existing (monolingual) wordnets, (mostly bilingual) translation dictionaries, and parallel corpora. Graph-based scoring functions and statistical learning techniques are used to iteratively integrate this information and build an output graph. Experiments show that this wordnet has a high level of precision and coverage, and that it can be useful in applied tasks such as cross-lingual text classification

    On the Feasibility of Transfer-learning Code Smells using Deep Learning

    Full text link
    Context: A substantial amount of work has been done to detect smells in source code using metrics-based and heuristics-based methods. Machine learning methods have been recently applied to detect source code smells; however, the current practices are considered far from mature. Objective: First, explore the feasibility of applying deep learning models to detect smells without extensive feature engineering, just by feeding the source code in tokenized form. Second, investigate the possibility of applying transfer-learning in the context of deep learning models for smell detection. Method: We use existing metric-based state-of-the-art methods for detecting three implementation smells and one design smell in C# code. Using these results as the annotated gold standard, we train smell detection models on three different deep learning architectures. These architectures use Convolution Neural Networks (CNNs) of one or two dimensions, or Recurrent Neural Networks (RNNs) as their principal hidden layers. For the first objective of our study, we perform training and evaluation on C# samples, whereas for the second objective, we train the models from C# code and evaluate the models over Java code samples. We perform the experiments with various combinations of hyper-parameters for each model. Results: We find it feasible to detect smells using deep learning methods. Our comparative experiments find that there is no clearly superior method between CNN-1D and CNN-2D. We also observe that performance of the deep learning models is smell-specific. Our transfer-learning experiments show that transfer-learning is definitely feasible for implementation smells with performance comparable to that of direct-learning. This work opens up a new paradigm to detect code smells by transfer-learning especially for the programming languages where the comprehensive code smell detection tools are not available

    Deepr: A Convolutional Net for Medical Records

    Full text link
    Feature engineering remains a major bottleneck when creating predictive systems from electronic medical records. At present, an important missing element is detecting predictive regular clinical motifs from irregular episodic records. We present Deepr (short for Deep record), a new end-to-end deep learning system that learns to extract features from medical records and predicts future risk automatically. Deepr transforms a record into a sequence of discrete elements separated by coded time gaps and hospital transfers. On top of the sequence is a convolutional neural net that detects and combines predictive local clinical motifs to stratify the risk. Deepr permits transparent inspection and visualization of its inner working. We validate Deepr on hospital data to predict unplanned readmission after discharge. Deepr achieves superior accuracy compared to traditional techniques, detects meaningful clinical motifs, and uncovers the underlying structure of the disease and intervention space
    • …
    corecore