14 research outputs found

    Direct Ensemble Estimation of Density Functionals

    Full text link
    Estimating density functionals of analog sources is an important problem in statistical signal processing and information theory. Traditionally, estimating these quantities requires either making parametric assumptions about the underlying distributions or using non-parametric density estimation followed by integration. In this paper we introduce a direct nonparametric approach which bypasses the need for density estimation by using the error rates of k-NN classifiers asdata-driven basis functions that can be combined to estimate a range of density functionals. However, this method is subject to a non-trivial bias that dramatically slows the rate of convergence in higher dimensions. To overcome this limitation, we develop an ensemble method for estimating the value of the basis function which, under some minor constraints on the smoothness of the underlying distributions, achieves the parametric rate of convergence regardless of data dimension.Comment: 5 page

    Understanding confounding effects in linguistic coordination: an information-theoretic approach

    Full text link
    We suggest an information-theoretic approach for measuring stylistic coordination in dialogues. The proposed measure has a simple predictive interpretation and can account for various confounding factors through proper conditioning. We revisit some of the previous studies that reported strong signatures of stylistic accommodation, and find that a significant part of the observed coordination can be attributed to a simple confounding effect - length coordination. Specifically, longer utterances tend to be followed by longer responses, which gives rise to spurious correlations in the other stylistic features. We propose a test to distinguish correlations in length due to contextual factors (topic of conversation, user verbosity, etc.) and turn-by-turn coordination. We also suggest a test to identify whether stylistic coordination persists even after accounting for length coordination and contextual factors

    Conditional Mutual Information Neural Estimator

    Full text link
    Several recent works in communication systems have proposed to leverage the power of neural networks in the design of encoders and decoders. In this approach, these blocks can be tailored to maximize the transmission rate based on aggregated samples from the channel. Motivated by the fact that, in many communication schemes, the achievable transmission rate is determined by a conditional mutual information term, this paper focuses on neural-based estimators for this information-theoretic quantity. Our results are based on variational bounds for the KL-divergence and, in contrast to some previous works, we provide a mathematically rigorous lower bound. However, additional challenges with respect to the unconditional mutual information emerge due to the presence of a conditional density function which we address here.Comment: To be presented at ICASSP 202

    Squared-loss mutual information via high-dimension coherence matrix estimation

    Get PDF
    Squared-loss mutual information (SMI) is a surro- gate of Shannon mutual information that is more advantageous for estimation. On the other hand, the coherence matrix of a pair of random vectors, a power-normalized version of the sample cross-covariance matrix, is a well-known second-order statistic found in the core of fundamental signal processing problems, such as canonical correlation analysis (CCA). This paper shows that SMI can be estimated from a pair of independent and identically distributed (i.i.d.) samples as a squared Frobenius norm of a coherence matrix estimated after mapping the data onto some fixed feature space. Moreover, low computation complexity is achieved through the fast Fourier transform (FFT) by exploiting the Toeplitz structure of the involved autocorrelation matrices in that space. The performance of the method is analyzed via computer simulations using Gaussian mixture models.This work is supported by projects TEC2016-76409-C2-1-R (WINTER), Ministerio de Economia y Competividad, Spanish National Research Plan, and 2017 SGR 578 - AGAUR, Catalan Government.Peer ReviewedPostprint (published version

    Mutual Information in Frequency and its Application to Measure Cross-Frequency Coupling in Epilepsy

    Full text link
    We define a metric, mutual information in frequency (MI-in-frequency), to detect and quantify the statistical dependence between different frequency components in the data, referred to as cross-frequency coupling and apply it to electrophysiological recordings from the brain to infer cross-frequency coupling. The current metrics used to quantify the cross-frequency coupling in neuroscience cannot detect if two frequency components in non-Gaussian brain recordings are statistically independent or not. Our MI-in-frequency metric, based on Shannon's mutual information between the Cramer's representation of stochastic processes, overcomes this shortcoming and can detect statistical dependence in frequency between non-Gaussian signals. We then describe two data-driven estimators of MI-in-frequency: one based on kernel density estimation and the other based on the nearest neighbor algorithm and validate their performance on simulated data. We then use MI-in-frequency to estimate mutual information between two data streams that are dependent across time, without making any parametric model assumptions. Finally, we use the MI-in- frequency metric to investigate the cross-frequency coupling in seizure onset zone from electrocorticographic recordings during seizures. The inferred cross-frequency coupling characteristics are essential to optimize the spatial and spectral parameters of electrical stimulation based treatments of epilepsy.Comment: This paper is accepted for publication in IEEE Transactions on Signal Processing and contains 15 pages, 9 figures and 1 tabl
    corecore