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Abstract—Squared-loss mutual information (SMI) is a surro-
gate of Shannon mutual information that is more advantageous
for estimation. On the other hand, the coherence matrix of a pair
of random vectors, a power-normalized version of the sample
cross-covariance matrix, is a well-known second-order statistic
found in the core of fundamental signal processing problems, such
as canonical correlation analysis (CCA). This paper shows that
SMI can be estimated from a pair of independent and identically
distributed (i.i.d.) samples as a squared Frobenius norm of a
coherence matrix estimated after mapping the data onto some
fixed feature space. Moreover, low computation complexity is
achieved through the fast Fourier transform (FFT) by exploiting
the Toeplitz structure of the involved autocorrelation matrices
in that space. The performance of the method is analyzed via
computer simulations using Gaussian mixture models.

Index Terms—Squared-loss mutual information, coherence
matrix, canonical correlation analysis, Gaussian mixture models,
characteristic function.

I. INTRODUCTION

The estimation of information measures is an important task
required in numerous signal processing and machine learning
applications [1]. Although Shannon’s mutual information (MI)
plays an important role in information and communications
theory, its estimation from finite realizations of random vari-
ables presents difficulties, complexities and small robustness
to outliers due to the “log” involved in its definition. To
cope with these problems, in the last years, researches have
proposed some surrogate contrast functions as valuable metrics
for feature selection. Among them, the so-called quadratic
measures of independence, such as quadratic MI (QMI) and
squared-loss MI (SMI) [2], play an important role because,
when they are coupled with Parzen probability density function
(PDF) estimators, they lead to kernel-based signal processing
methods [3], [4]. Another prominent example of the idea
is the Hilbert-Schmidt independence criterion (HSIC) [5].
Although this general idea solves some complexity issues
when dealing with data, the computational complexity of
kernel methods is still proportional to the squared data size
[3], which compromises its direct application to large data
records in a flexible manner. This issue is explored in [6], in
which the computational complexity is reduced by a feature
space based on an autoregressive parametrization of the PDFs,
but focused on building an estimate of Shannon’s entropy and
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Kullback-Leibler (KL) divergence, which are unidimensional
information-theoretic measures.

The purpose of this paper is to show (Sec. III) that the
discrete SMI can be interpreted as a squared Frobenius norm
of a coherence matrix (CM) computed after assigning the
symbols of each source to vectors on an arbitrary orthonor-
mal basis. From this interpretation, and motivated by some
enlightened links with other fundamental statistics used in
detection, estimation and information theory, the purpose is
then to show (Sec. IV) that the continuous version of the SMI
can be estimated in a similar way to the discrete case after a
feature map that assigns the values of each random variable
to vectors of fixed dimensionality, a fact that offers significant
computational complexity savings. Moreover, we propose a
specific feature map based on the empirical characteristic
function (CF), which provides (Sec. V) further computational
savings as a result of the Toeplitz structure of the involved
autocorrelation matrices.

II. SQUARED-LOSS MUTUAL INFORMATION

Consider a pair of memory-less sources X and Y . For
discrete sources with alphabets X = {x1, x2, . . . , xN} and
Y = {y1, y2, . . . , yM}, the SMI is defined as [2]:

Is(X;Y ) =
∑
x∈X

∑
y∈Y

(
PXY (x, y)− PX(x)PY (y)√

PX(x)PY (y)

)2

, (1)

where PX(x) = Pr{X = x} and PY (y) = Pr{Y = y} are the
marginal probability mass functions (PMF) and PXY (x, y) =
Pr{X = x, Y = y} is the joint PMF. Similarly, for continuous
sources, the SMI is given by:

Is(X;Y ) =

∫ ∫ (
pXY (x, y)− pX(x)pY (y)√

pX(x)pY (y)

)2

dxdy, (2)

where pX(x) and pY (y) are marginal PDFs and pXY (x, y)
is the joint PDF. Both expressions can be obtained by upper-
bounding the natural “log” operator in the MI expression as
ln(x) ≤ x − 1, for which SMI becomes a quantity lower-
bounded by Shannon MI (that is, Is(X;Y ) ≥ I(X;Y ))
expressed in nats. Whereas the ordinary MI is the Kullback-
Leibler divergence from pXY (x, y) to pX(x)pY (y), SMI is
the Pearson chi-squared divergence [7] and operates as a local
approximation of MI [8]. The main advantage of SMI as
a measure of information is the lack of the “log” operator
inside the summation, which is present in the MI definition,
endowing it good properties for estimation purposes.
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III. DISCRETE SMI VIA ESTIMATION OF COHERENCE

In the discrete case, by defining the marginal probability
column vectors [p̃]n = PX(xn) and [q̃]m = PY (ym), and
the joint probability matrix [J̃ ]n,m = PXY (xn, ym), the SMI
given in (1) can be compactly expressed as

Is(X;Y ) =

N∑
n=1

M∑
m=1

|[C̃]n,m|2 = tr
(
C̃T C̃

)
= ||C̃||2F , (3)

where (.)T denotes transpose, tr(.) denotes the trace, ||.||F
denotes the Frobenius norm, and matrix C̃ ∈ RN×M is defined
as

C̃ = [p̃]
−1/2

(
J̃− p̃q̃T

)
[q̃]
−1/2 , (4)

where [p̃] is the diagonal matrix with entries {[p̃]n}1≤n≤N
and [q̃] is defined similarly.

Let F ∈ CN×N and G ∈ CM×M be unitary matrices,
formed by the set of columns F = {fn}n=1,2,...,N ∈ CN×1
and G = {gm}m=1,2,...,M ∈ CM×1, respectively. Using trace
and unitarity properties, SMI can be alternatively expressed as
Is(X;Y ) = tr(CHC) = ||C||2F with

C = FC̃GH = P−1/2
(
J− pqH

)
Q−1/2, (5)

where (.)H denotes Hermitian transpose, p = Fp̃, q = Gq̃,
P = F[p̃]FH , Q = G[q̃]GH and J = FJ̃GH . To provide
an interpretation of the involved vectors and matrices in (5),
let us construct the random vectors x ∈ F and y ∈ G from
the discrete sources X and Y by the one-to-one mappings
φX(.) : X → F and φY (.) : Y → G defined as

xn → fn ym → gm , (6)

respectively. Clearly, the expectation theorem allows to write
p = E [x], q = E [y], P = E

[
xxH

]
, Q = E

[
yyH

]
, and

J = E
[
xyH

]
, which means that all of them can be seen as

first and second order statistics of the data after a feature map
as described above. Effectively, matrix (J−pqH) is the cross-
covariance matrix of the vector data mapped onto the feature
space, while P and Q are the autocorrelation matrices.

Expressions (4) & (5) are relevant due to their intimate link
with other fundamental results, which is worth to highlight. In
particular, (4) plays an important role in Euclidean information
theory [8], which results from a local approximation of MI
based on information bottleneck [9] or linear information cou-
pling. To see the link, let us write C̃ = B− p̃1/2q̃H/2, where
B = [p̃]−1/2J̃[q̃]−1/2 is the divergence transition matrix
(DTM) [8] of a discrete memory-less communication channel,
a linear map endowed with insightful geometrical interpreta-
tions. It is shown in [8] that the largest singular value of B is 1,
with associated right and left singular vectors p̃1/2 and q̃1/2,
respectively. As a direct consequence of this property, our
matrix C̃ defined in (4) verifies that rank(C̃) = min(N,M)−1
and, therefore, 0 ≤ Is(X;Y ) ≤ min(N,M)−1. Moreover, the
second largest singular value of B, which corresponds to the
largest singular value of C, is the Hirschfeld-Gebelein-Rényi
(HGR) maximal correlation coefficient 0 ≤ ρ(X;Y ) ≤ 1, an
information measure that has found interesting applications in
information theory [10].

Finally, expression (5) can be linked as well with other
signal processing concepts. Effectively, a direct application
of Woodbury identity (see Appendix) reveals that C =
(P−ppH)+/2(J−pqH)(Q−qqH)+/2 (where +, denoting
pseudo-inverse, is required to deal with the rank deficient
structure of the auto-covariance matrices P − ppH and
Q − qqH ), and therefore it is a true coherence matrix. This
observation tells that HGR and SMI can both be obtained
through canonical correlation analysis (CCA) [11] as

ρ(X;Y ) = λmax (C) (7)

Is(X;Y ) =

min(N,M)−1∑
i=1

|λi (C)|2 , (8)

respectively, where 0 ≤ λi ≤ 1 (with λi+1 ≤ λi, ∀i) are
the real, non-negative singular values of matrix C in (5),
which coincide with those of C̃ in (4), and λmin(N,M) =
λmin (C) = 0 for the reasons explained above. Finally, (5)
is also related with the seminal work [12] where, using
Wijsman’s theorem, authors proved that the Frobenius norm of
the sample coherence is the locally most powerful invariant test
(LMPIT) for the detection of correlation in Gaussian vectors.

IV. SMI VIA EMPIRICAL CHARACTERISTIC FUNCTION

For the continuous case (2), our aim is to obtain an estimator
still based on the Frobenius norm of a coherence matrix.
Although in that case the dimension of the feature space would
need to be infinite (as the alphabet size is infinite) in order to
obtain the exact SMI, the main goal is to understand which
is the performance/complexity trade-off achieved by using a
finite feature space dimension.

Before going into detail, it is worth emphasizing that, from
a completely different perspective, the core of the basic idea
described in this section is well-known in the machine learning
literature. Specifically, kernel methods are based on an implicit
feature map onto an infinite dimensional space that relies
on the “kernel trick” supported by the reproducing kernel
Hilbert spaces (RKHS) theory [13]. Despite this powerful
idea, regularization [3] is ultimately needed anyway in kernel
signal processing to avoid overfitting caused by the excessive
dimensionality. In this sense, the fixed feature map proposed in
the sequel can be seen as an alternative way of regularizing the
problem from scratch in order to obtain overall computational
benefits, thus avoiding the need of implementing speed up
techniques such as the incomplete Cholesky factorization [3].

Among different options, let us construct the random vectors
x ∈ CN×1 and y ∈ CN×1 from the random variables X and Y
by the mappings φX(.) : R → CN×1 and φY (.) : R → CN×1
defined as

x→ ejαnx y → ejαny , (9)

respectively, where n ∈ ZN×1 is a vector of integers defined
as n = [−K,−K + 1, · · · ,K]T with N = 2K + 1 and K ≥
1. Based on the mapping suggested in (6) for the discrete
case, the rationale is now to use the mapping from (9) for the
continuous case while still estimating (5). Note that, by doing
so, we are relaxing the orthogonal constraint satisfied in the
discrete case to an asymptotically orthogonal constraint for



the continuous case (which means that the form (5) used with
the mapping (9) will yield the true SMI for N →∞), aimed
at obtaining a balance between accuracy and complexity. An
insightful interpretation of (9) is that the first and second order
statistics computed at the feature space are both obtained from
a uniform sampling of the marginal and joint empirical CF of
the original random variables, being α the sampling period.
For a more in-depth rationale of (9) within the framework of
independence detection, the reader is referred to [14].

In summary, assuming that L independent and identically
distributed (i.i.d.) samples {x(l), y(l)}0≤l≤L−1 from random
variables X and Y are available, we obtain the 2K + 1
dimensional vector sequences x(l) = ejαnx(l) and y(l) =
ejαny(l) according to (9) and define the CF-based SMI as
Îcs(X;Y ) = ||Ĉ||2F , where

Ĉ = P̂−1/2
(
Ĵ− p̂q̂H

)
Q̂−1/2 (10)

is the sample CM of the mapped data, with p̂ = 〈x(l)〉L,
q̂ = 〈y(l)〉L, P̂ =

〈
x(l)xH(l)

〉
L

, Q̂ =
〈
y(l)yH(l)

〉
L

, and
Ĵ =

〈
x(l)yH(l)

〉
L

, where 〈.(l)〉L = L−1
∑L−1
l=0 .(l) generally

denotes the L-length sample mean operator.

V. SMI IN LARGE FEATURE SPACE DIMENSION REGIME

The main bottleneck in (10) is the inversion of autocor-
relation matrices, specially for large dimension. Note that
large dimensions of feature spaces are needed to discover
complex non-linear associations present in the data. In this
regime, a further advantage of the map (9) is that the sample
autocorrelation matrices P̂ and Q̂ have a Toeplitz structure.
This can be easily seen as follows:

P̂ =
〈
ejαnx(l)e−jαn

T x(l)
〉
L
= toe (p̂a) , (11)

where toe(.) denotes a Toeplitz and Hermitian matrix con-
structed from its first column vector, p̂a =

〈
ejαnax(l)

〉
L

,
and na ∈ ZN×1 is an asymmetric vector of integers defined
as na = [0, 1, · · · , 2K]T . Similarly, Q̂ = toe (q̂a), with
q̂a =

〈
ejαnay(l)

〉
L

.
The Toeplitz structure provides two main advantages to

reduce complexity. On the one hand, it turns out that second
order statistics P̂ and Q̂ of the mapped data can be constructed
solely from their (extended) first order statistics through (11).
On the other hand, assuming that marginal PDFs are square
integrable, i.e.

∫
p2X(x)dx < ∞ and

∫
p2Y (y)dy < ∞, then

Parseval’s theorem implies that CFs are also square integrable
and, therefore, limw→±∞E

[
ejwx

]
= limw→±∞E

[
ejwy

]
=

0, which ensures the off-diagonal decay in P̂ and Q̂. Under
these conditions, Szegö’s theorem [15] establishes that, for
large dimension, Toeplitz matrices are asymptotically diago-
nalizable by the unitary Fourier matrix, and its eigenvalues
asymptotically behave like samples of the Fourier transform
of its entries. This fact naturally motivates a frequency-domain
analysis to reduce complexity in the large-dimension regime,
similar to the traditional analysis of large stationary correlated
processes. In particular, as the Frobenius norm is invariant
under unitary transformations, we propose a computationally

effective approximation of the CF-based SMI for the case of
very large N as Îacs(X;Y ) = ||Ĉ′||2F , where

Ĉ′ = [p̂′]−1/2U
(
Ĵ− p̂q̂H

)
UH [q̂′]−1/2, (12)

with U the unitary Fourier matrix, p̂′ = diag(UP̂UH), and
q̂′ = diag(UQ̂UH), and diag(.) denotes a vector formed by
the main diagonal entries of a matrix, i.e. [diag(.)]n = [.]n,n.

Finally, inspired on the duality that this problem holds with
classical spectral estimation theory [16], vectors p̂′ and q̂′ can
be efficiently computed as Fourier transforms of “windowed”
empirical CF samples:

p̂′ = 2
√
NRe

[
UH (p̂a �w)

]
− 1 (13a)

q̂′ = 2
√
NRe

[
UH (q̂a �w)

]
− 1, (13b)

where w is a unilateral triangular window with elements
{[w]n}0≤n≤N−1 = 1 − n/N and � denotes the Hadamard
product. Note that (12), (13a) and (13b) can be computed
very efficiently by means of the fast Fourier transform (FFT)
algorithm, which is crucial in the large-dimension regime.
Interestingly, (13a) and (13b) can be seen as Blackman-Tukey
[16] PDF estimators from finite samples of the empirical
CFs, a dual version of the classical nonparametric spectral
estimation problem from finite samples of the empirical auto-
correlation function of stationary data.

VI. SIMULATION RESULTS

To check the validity of the SMI estimator, we use the Gaus-
sian mixture models (GMM) recently proposed in [14]. Cor-
related and uncorrelated data is modeled as zc ∼ N (0,Σρ)
and zu ∼ 0.5N (0,Σρ) + 0.5N (0,Σ−ρ), respectively, with

Σρ =

[
1 ρ
ρ 1

]
. It is not difficult to show that the true

SMI for these models is Isc(X;Y ) = ρ2/(1 − ρ2) and
Isu(X;Y ) = ρ4/(1 − ρ4), which provides a means for
performance evaluation.

The sampling period α in (9) is chosen in order to minimize
the aliasing induced by sampling the CF, which should be
lower than the inverse of the standard deviation of the data.
The data is normalized to unit variance to ensure that the
sampling period is the same for any given ρ, which is set to
α = 0.1. On the other hand, N needs to be sufficiently large in
order to reduce the implicit smearing of the PDF. Specifically,
we want the mapping with overall support αN on the CF
to minimize the smearing, whose impact is dominant on the
narrowest direction of the joint PDF and is characterized by
the smallest eigenvalue of the covariance matrix λmin (Σρ). In
general we will choose the minimum feature space dimension
Nmin in order to handle the worst case in terms of PDF resolu-
tion, which corresponds to the largest effective support of the
CF. Therefore, Nmin depends on the maximum |ρ| of the data
being measured. As a result we have Nmin = 1/(αλmin(Σρ)),
being λmin(Σρ) = 1− |ρ|max.

Figure 1 shows the mean value of the estimated SMIs for
different ρ2 by means of Monte Carlo simulations, compared
with the least squares mutual information estimator (LSMI)
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Fig. 1. Mean of the estimated SMI vs. ρ2 for both models using Îcs
(N = 75), Îacs (N = 151) and LSMI for L = 105. The true SMI is also
shown.

[2]. The LSMI kernel bandwidth is selected through cross-
validation as in [17], and the regularization parameter is 10−4.
In general, a bias can be observed that is accentuated for
increasing values of ρ due to the impact of the implicit
smearing, which shows the difficulty of estimating the SMI
when it is large. However, Îcs provides a better estimate than
the LSMI, specifically in this context of high SMI. Regarding
the Szegö’s approach, note that Îacs is evaluated with a higher
value of N than that used for Îcs in order to observe the desired
behavior, thus providing a fair comparison.

Figure 2 shows the normalized bias and normalized variance
for both models as a function of N . On the one hand, Îcs
provides a reduced bias for N > Nmin needed to ensure
sufficiently small smearing at ρ = 0.5, which in this case
corresponds to Nmin = 20. On the other hand, the variance
of Îcs is increased for higher N and, since the measurements
are strictly overestimating the true SMI at low ρ values, the
bias is also increased. As a consequence of this effect, the bias
can be reduced by increasing L. Although LSMI provides less
variance, its regularization parameter is very sensitive in terms
of bias due to overfitting, which is usually selected through
cross-validation. On the contrary, Îcs admits a more insightful
selection of the algorithm parameters, directly guided from
classical concepts shared by spectral analysis such as smearing
and leakage. Concerning to Îacs, higher N tend to approximate
both bias and variance to those of Îcs, hence confirming the
asymptotic behavior. However, the optimal N in terms of bias
is higher than the Nmin for Îcs since the Toeplitz matrices need
to be sufficiently large in order to ensure a good approximate
of the diagonalization through the Fourier transform.

VII. CONCLUSIONS

This paper derived an estimator of the squared-loss mu-
tual information (SMI) from i.i.d. data. The advantage of
the estimator is twofold: a lower computational complexity
due to the limitation of the feature space dimension, and
a computationally efficient algorithm based on the Szegö’s
theorem and on the fast Fourier transform. Both approaches
presented in this paper provide lower bias at the cost of an
increased variance, but their parameters can be selected based
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Fig. 2. Normalized bias and variance of Îcs and Îacs vs. N for ρ2 = 0.25,
jointly with the LSMI for L = 105. Continuous and dashed lines represent
the correlated and uncorrelated models, respectively.

on dual ideas from spectral analysis, thus avoiding the need for
parameter tuning through cross-validation. As a future work,
the bias and variance of the estimator can be handled by the
means of a tapering function over the characteristic function
space, which would lead to a more controllable estimate for
any feature space dimension selection.

APPENDIX
From (3) and (4), and using trace properties,

Is(X;Y ) = tr
(
(J̃− p̃q̃T )[q̃]−1(J̃− p̃q̃T )T [p̃]−1

)
. (14)

Let 0D and 1D be D× 1 vectors with all-zeros and all-ones.
As q̃T1M = 1 (unit-area of PDF) and J̃1M = p̃ (joint PDF
marginalization), we have (J̃ − p̃q̃T )1M = 0N and 1TN (J̃ −
p̃q̃T ) = 0TM . Since 1TN and 1M are the left and right singular
vectors of (J̃− p̃q̃T ) associated to a null singular value,

Is(X;Y ) = tr
(
(J̃− p̃q̃T )

(
[q̃]−1 + ε1M1TM

)
×(J̃− p̃q̃T )T

(
[p̃]−1 + ε1N1TN

))
(15)

for any ε. Using Woodbury identity and that [q̃]1M = q̃,(
[q̃]−1 + ε1M1TM

)−1
= [q̃]− [q̃]1M1TM [q̃]

1
ε + 1TM [q̃]1M

= [q̃]− q̃q̃T

1
ε + 1

,

(16)
and similarly for

(
[p̃]−1 + ε1N1TN

)−1
. Now, for ε→∞,

(J̃− p̃q̃T )[q̃]−1 = lim
ε→∞

(J̃− p̃q̃T )
(
[q̃]−1 + ε1M1TM

)
(17)

= lim
β→1

(J̃−p̃q̃T )
(
[q̃]− βq̃q̃T

)−1
= (J̃−p̃q̃T )

(
[q̃]− q̃q̃T

)+
,

where + is introduced because
(
[q̃]− q̃q̃T

)
has a null eigen-

value with eigenvector 1M , and similarly for (J̃−p̃q̃T )T [p̃]−1.
Then,

Is(X;Y ) = tr
(
(J̃− p̃q̃T )

(
[q̃]− q̃q̃T

)+
×(J̃− p̃q̃T )T

(
[p̃]− p̃p̃T

)+)
, (18)

and, as F and G from (5) are complex and unitary, we obtain

Is(X;Y ) = tr
(
(J− pqH)

(
P− ppH

)+
×(J− pqH)H

(
Q− qqH

)+)
. (19)
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