7 research outputs found

    Sensor array processing: localisation of wireless sources

    Get PDF
    In this thesis, various subspace array processing techniques for wireless source localisation are presented and investigated in the following three aspects. First, in the environment of indoor optical wireless communications, the paths of different sources and/or from different reflectors may impinge on the receiver from closely spaced directions with a high probability. In this case, the ranges of the paths, together with their directions, are important especially for isolating the desired source from the interferers. A blind multi-source localisation approach, which can be used as a channel estimator in the receiver of a communication system, is proposed for direction, range, and path gain estimation. Utilising the above channel parameter estimates, two subspace multibeam beamformers are also presented to achieve complete interference cancellation. Second, in applications such as wireless sensor networks and ubiquitous computing, both the location and orientation of an array are important parameters of interest to be estimated. Hence, array localisation and orientation estimation approaches are proposed for two cases. In the first case, a number of sources of known locations are employed to estimate these parameters of a receiver array. In the second case, a receiver array is utilised to estimate these parameters of multiple sources with each one being a transmitter array. Last, when sources operate in the near field of an array, the spherical wave propagation model needs to be considered. A problem associated with such a scenario is source localisation under the wideband assumption, where the wavefront of a baseband signal varies when traversing through the sensors of the array. Two novel approaches with the employment of the subcovariance of the received signal and the rotation of the array reference point are proposed to localise multiple sources under the wideband assumption. Throughout the thesis, computer simulation studies are presented for evaluating the performance of the proposed approaches.Open Acces

    Aeronautical engineering: A continuing bibliography with indexes (supplement 251)

    Get PDF
    This bibliography lists 526 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Unitary matrix completion-based DOA estimation of noncircular signals in nonuniform noise

    No full text
    In this paper, a novel direction-of-arrival (DOA) estimation algorithm is proposed for noncircular signals with nonuniform noise by using the unitary matrix completion (UMC) technique. First, the proposed method utilizes the noncircular property of signals to design a virtual array for approximately doubling the array aperture. Then, the virtual complex-valued covariance matrix with the unknown nonuniform noise is transformed into the real-valued one by utilizing the unitary transformation to improve the computational efficiency. Next, a novel UMC method is formulated for the DOA estimation to remove the influence of nonuniform noise. Finally, the DOA without the influence of the unknown noncircularity phase is obtained by using the modified estimation of signal parameters via rotational invariance technique (ESPRIT). Especially, for handling the coherent sources, the forward-backward spatial smoothing technique is utilized to reconstruct a full-rank covariance matrix so that the signal subspace and the noise subspace can be correctly separated. Due to utilizing the extended array aperture and the unitary transformation, the proposed method can identify more sources than the number of physical sensors and provides higher angular resolution and better estimation performance. Compared with the existing DOA estimation algorithms for noncircular signals, the proposed one can effectively suppress the influence of the nonuniform noise. The simulation results are provided to verify the effectiveness and superiority of the proposed method.Published versio

    Unitary Matrix Completion-Based DOA Estimation of Noncircular Signals in Nonuniform Noise

    No full text

    Energy: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 1920 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System from July 1, 1980 through September 30, 1980
    corecore