93 research outputs found

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Mechanical design optimization for multi-finger haptic devices applied to virtual grasping manipulation

    Get PDF
    This paper describes the design of a modular multi-finger haptic device for virtual object manipulation. Mechanical structures are based on one module per finger and can be scaled up to three fingers. Mechanical configurations for two and three fingers are based on the use of one and two redundant axes, respectively. As demonstrated, redundant axes significantly increase workspace and prevent link collisions, which is their main asset with respect to other multi-finger haptic devices. The location of redundant axes and link dimensions have been optimized in order to guarantee a proper workspace, manipulability, force capability, and inertia for the device. The mechanical haptic device design and a thimble adaptable to different finger sizes have also been developed for virtual object manipulation

    How do humans mediate with the external physical world? From perception to control of articulated objects

    Get PDF
    Many actions in our daily life involve operation with articulated tools. Despite the ubiquity of articulated objects in daily life, human ability in perceiving the properties and control of articulated objects has been merely studied. Articulated objects are composed of links and revolute or prismatic joints. Moving one part of the linkage results in the movement of the other ones. Reaching a position with the tip of a tool requires adapting the motor commands to the change of position of the endeffector different from the action of reaching the same position with the hand. The dynamic properties are complex and variant in the movement of articulated bodies. For instance, apparent mass, a quantity that measures the dynamic interaction of the articulated object, varies as a function of the changes in configuration. An actuated articulated system can generate a static, but position-dependent force field with constant torques about joints. There are evidences that internal models are involved in the perception and control of tools. In the present work, we aim to investigate several aspects of the perception and control of articulated objects and address two questions, The first question is how people perceive the kinematic and dynamic properties in the haptic interaction with articulated objects? And the second question is what effect has seeing the tool on the planning and execution of reaching movements with a complex tool? Does the visual representation of mechanism structures help in the reaching movement and how? To address these questions, 3D printed physical articulated objects and robotic systems have been designed and developed for the psychophysical studies. The present work involves three studies in different aspects of perception and control of articulated objects. We first did haptic size discrimination tasks using three different types of objects, namely, wooden boxes, actuated apparatus with two movable flat surfaces, and large-size pliers, in unimanual, bimanual grounded and bimanual free conditions. We found bimanual integration occurred in particular in the free manipulation of objects. The second study was on the visuo-motor reaching with complex tools. We found that seeing the mechanism of the tool, even briefly at the beginning of the trial, improved the reaching performance. The last study was about force perception, evidences showed that people could take use of the force field at the end-effector to induce the torque about the joints generated by the articulated system

    Ipsi- and contralateral corticospinal influences in uni- and bimanual movements in humans

    Full text link
    Il existe des projections corticospinales (CS) vers les motoneurones (MNs) aussi bien contra- (c) qu’ipsilatérales (i). Les influences CSc sur les MNs du poignet sont connues pour être modulées entre autres par la position du poignet et les afférences cutanées. Pour cette raison, notre objectif était de vérifier si ces caractéristiques sont aussi valides pour les influences CSi. En utilisant la stimulation transcrânienne magnétique au niveau du cortex primaire droit, nous avons tout d’abord comparé les influences CSi sur les MNs des fléchisseurs du poignet à des positions maintenues de flexion et d’extension durant une tâche uni-manuelle ainsi que deux tâches bimanuelles, ceci chez des sujets droitiers (n=23). Nous avons ensuite comparé les influences CSi dans cinq tâches bi-manuelles de tenue d’objet durant lesquelles les sujets avaient à tenir entre leurs mains un bloc à la surface soit lisse, soit rugueuse, dont le poids était supporté ou non, ceci en position de flexion (n=21). Dans une tâche, un poids était ajouté au bloc lisse en condition non supportée pour amplifier les forces de préhension requises. Une modulation positiondépendante était observée au niveau des potentiels évoqués moteurs (iPEM), mais seulement lors de la tâche bi-manuelle quand les deux mains interagissaient via un bloc (p= 0.01). Une modulation basée sur la texture était également présente, quel que soit le support de poids, et le bloc lisse était associé avec des iPEMs plus importants en comparaison avec le bloc rugueux (p= 0.001). Ainsi, les influences CSi sur les MNs n’étaient modulées que lors des tâches bi-manuelles et dépendaient de la manière dont les mains interagissaient. De plus, les afférences cutanées modulaient les influences CSi facilitatrices et pourraient ainsi participer à la prise en main des objets. Il en est conclu que les hémisphères droit et gauche coopèrent durant les tâches bimanuelles impliquant la tenue d’objet entre les mains, avec la participation potentielle de projections mono-, et poly-synaptiques, transcallosales inclues. La possibilité de la contribution de reflexes cutanés et d’étirement (spinaux et transcorticaux) est discutée sur la base de la notion que tout mouvement découle du contrôle indirect, de la « référence » (referent control). Ces résultats pourraient être essentiels à la compréhension du rôle des interactions interhémisphériques chez les sujets sains et cliniques.There are both contra- (c) and ipsilateral (i) corticospinal (CS) projections to motoneurons (MNs). There is evidence that cCS influences on wrist MNs are modulated by wrist position and cutaneous afferents. Thus, we aimed to test whether these findings are valid for iCS influences as well. Using transcranial magnetic stimulation applied over the right primary motor cortex, we first compared iCS influences on wrist flexor MNs at actively maintained flexion and extension wrist positions in one uni- and two bimanual tasks in right-handed subjects (n=23). We further compared iCS influences in five bimanual holding tasks in which subjects had to hold a smooth or coarse block between their hands, with or without its weight being supported, in flexion position (n=21). In one task, a weight was added to the unsupported smooth block to increase load forces. A position-dependent modulation of the short-latency motor evoked potential (iMEP) was observed, but only in the bimanual task when the two hands interacted through a block (p=0.01). A texture-dependent modulation was present regardless of the weight supported, and the smooth block was associated with larger iMEPs in comparison to the coarse block (p=0.001). Hence, iCS influences on MNs were modulated only in bimanual tasks and depended on how the two hands interacted. Furthermore, cutaneous afferents modulated facilitatory iCS influences and thus may participate to grip forces scaling and maintaining. It is concluded that the left and right cortices cooperate in bimanual tasks involving holding an object between the hands, with possible participation of mono- and poly-synaptic, including transcallosal projections to MNs. The possible involvement of spinal and trans-cortical stretch and cutaneous reflexes in bimanual tasks when holding an object is discussed based on the notion that indirect, referent control underlies motor actions. Results might be essential for the understanding of the role of intercortical interaction in healthy and neurological subjects

    Use of commercial gaming console WII for rehabilitation of hand impairments in young adults with Cerebral Palsy

    Get PDF
    Abstract The purpose of this study examined the feasibility of using a low-cost, commercially available gaming platform, the Wii® on improving the hand dexterity impairments in young adults with cerebral palsy. The study included 5 young adults with spastic cerebral palsy with a score of 1-3 on the GMFCS scale and a score of 1-2 on the MACS scale. The participants underwent an 8-week training intervention using the Wii™ for approximately 30 min/day 2 times a week. Training was performed using the Wii™ sports games software, including boxing, tennis, bowling, and archery. Three outcomes measures for hand impairments were used and tested during the study: such as the Hand dynamometer for the grip strength, Purdue peg board for the fine finger dexterity and the Box and Block test for the manual gross dexterity pre-and post- intervention as well as the family-reported activities of daily living before and after the interventions. A student’s t-test was used to analyse the pre- and the post-test results. The feasibility of using the virtual reality (Wii™) in the rehabilitation settings for young adults with CP showed positive outcomes in improving their hand impairments and manual ability. Additional hypotheses were proposed from the study for additional research

    How do healthy individuals adapt to reversed vision generated when using mirror specs? An investigation into mirror devices, adaptation to body schema and imagery ability in healthy participants

    Get PDF
    Introduction: This study investigates a new form of Mirror Therapy (MT), the Mirror Specs. Evidence suggests that MT is a non-invasive, cost effective method of reducing pain and increasing functioning in some chronic pain conditions. There is no clear explanation for the underlying mechanisms of MT, however, a plausible hypothesis suggests that adaptation to the Body Schema is an integral component. Aims and Hypotheses: The current study examined Body Schema adaptation in healthy participants when performing a Finger Tapping Task with both Mirror Specs and a Mirror Box. It was hypothesised that adaptation would be indicated by increases in Reaction Times (RTs) and Error Rates when comparing unimanual phases of a Finger Tapping Task, following a bimanual „adaptation‟ phase. It was hypothesised that there would be no difference between participants‟ ability to adapt to each device. Finally, the study proposed that there would be a relationship between the adaptation observed on the Finger Tapping Task and participants individual imagery abilities. Method: Participants performed 4 phases of a Finger Tapping Task with alternate bimanual and unimanual phases when using both the Mirror Specs and Mirror Box. Imagery abilities were measured using self-report questionnaires and a Motor Imagery computer task. Results and Discussion: Repeated Measures ANOVAs revealed reductions in RTs and Error Rates in Phase 3 compared to Phase 1 on the Finger Tapping Task. There were no differences between RTs and Error Rates when using the Mirror Specs and Mirror Box. These findings suggest that healthy participants were able to use each Mirror Device effectively and this provide impetus for the proposal that Mirror Specs could provide a practical, cost effective addition to rehabilitation services. Finally, there were no clinically significant relationships between use of the Mirror Devices and imagery abilities, thereby indicating imagery abilities did not influence how participants adapted to using the Mirror Devices

    柔軟な両腕運動制御を実現する計算論的神経機構

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    Measurement of bimanual coordination in rehabilitation for poststroke individuals: a systematic review

    Get PDF
    A stroke can result in a decreased ability to coordinate the upper limbs, which leads to difficulty in performing the activities of daily living (ADLs). As a result, upper-extremity rehabilitation has been frequently implemented to improve impaired bimanual coordination. Many studies have examined the nature of bimanual coordination during two-handed discrete tasks such as reaching and grasping in many different populations. Over the past few decades, much research has been devoted to examining the nature of bimanual coordination. Foundational research examining bimanual coordination (i.e., inter-limb coordination) and control, has focused on how different constraints (e.g., task, individual) affect the degree and stability of spatial and temporal coupling between the end effectors or joints. This was done in the context of different philosophical paradigms, in the field of motor control and coordination, such as coordinative structures (Kugler et al., 1980), and synergies (Haken, 1983). However, in rehabilitation studies, the issue of bimanual coordination, along with the theoretical relevance of the emerging inferences have not been systematically addressed. Therefore, the first purpose of this project was to systematically review the methodological approaches used in the literature that examine changes in coordination and control in those who have had a stroke following upper-limb rehabilitation that aimed to improve bimanual function. Another objective was to classify these approaches in regards to their theoretical and conceptual basis. From this, suggestions were made as to how to potentially enhance the existing approaches to measuring inter-limb coordination during bimanual rehabilitation. [...

    Bimanual coordination and motor learning in children with unilateral motor disorders

    Get PDF
    Introduction Appropriate bimanual coordination is essential for many tasks in daily life. Children with unilateral cerebral palsy (uCP) however struggle with the execution of such tasks. Extensive research has been done investigating motor impairments on a functional level using standardized procedures. There is a lack of studies however looking at the specific problem of coordination of a bimanual task, especially with respect to the different underlying neuropathologies. Aims & Methods Within this thesis, kinematics of bimanual hand movement during a role differentiated bimanual box opening task in children with uCP, as well as in typically developing children (TDC) of similar ages, were investigated. The aims were: i) to identify behavioural changes in peak periods of development of the corpus callosum and areas of the prefrontal cortex, both of which are related to bimanual function in typically developing children; ii) to explore the relation between motor impairments of children with uCP and their bimanual coordination and iii) to investigate the impact of various underlying neuropathologies on bimanual coordination in children with uCP. Results For the first study, a total of 37 TDC between 5 and 16 years were included and allocated to their respective age-group: Young Children (YC: 5-6 years), Old Children (OC: 7-9 years) and Adolescents (AD: 10-16 years). The two older groups performed the task significantly faster than YC. Likewise, a trend (yet without reaching significance) towards a more ideal temporal sequencing was shown between YC and the two older groups. In contrast, spatial accuracy as expressed by the path length increased only in the AD group. For the second study, a total of 37 children with uCP between 7 and 17 years were included. Children presented manual impairments between levels I and III (according to the Manual Ability Classification System). It could be shown that task duration increased and spatial accuracy decreased with increasing levels of impairment, especially in children with higher levels of impairment (level III). Furthermore it could be shown that a subgroup of children experienced an involuntary interference when moving their affected hand, limiting the use of their less affected hand. The third study utilised a multiple case study involving nine children diagnosed with uCP with neuroimaging and neurophysiological data. The children were found to have various neuropathological patterns resulting in different forms and severities of motor impairments. It could be shown that grey-matter lesions had the most severe impact on manual abilities. Conclusion In TDC, performance of bimanual hand movements was temporally related to peak developmental periods of the corpus callosum, emphasizing the importance of interhemispheric exchange of information for bimanual coordination. In children with uCP, bimanual performance was related to the level of impairment of the affected hand. In addition it was found however that some children show excessive bimanual interference when using their affected hand in a bimanual task which limits the functionality of the less affected hand, possibly related to i) ipsilateral corticomotor projection patterns from the less affected hemisphere to the affected hand or ii) lack of suppression of interhemispheric crosstalk. It could also be shown that the various neuropathologies can affect bimanual motor control differently. Detailed diagnosis of the neuropathology and motor impairment are thus essential for the planning of tailored therapy interventions
    corecore