2,548 research outputs found

    ImageJ2: ImageJ for the next generation of scientific image data

    Full text link
    ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. Due to these new and emerging challenges in scientific imaging, ImageJ is at a critical development crossroads. We present ImageJ2, a total redesign of ImageJ offering a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. ImageJ2 provides a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions

    A Framework for the Organization and Discovery of Information Resources in a WWW Environment Using Association, Classification and Deduction

    Get PDF
    The Semantic Web is envisioned as a next-generation WWW environment in which information is given well-defined meaning. Although the standards for the Semantic Web are being established, it is as yet unclear how the Semantic Web will allow information resources to be effectively organized and discovered in an automated fashion. This dissertation research explores the organization and discovery of resources for the Semantic Web. It assumes that resources on the Semantic Web will be retrieved based on metadata and ontologies that will provide an effective basis for automated deduction. An integrated deduction system based on the Resource Description Framework (RDF), the DARPA Agent Markup Language (DAML) and description logic (DL) was built. A case study was conducted to study the system effectiveness in retrieving resources in a large Web resource collection. The results showed that deduction has an overall positive impact on the retrieval of the collection over the defined queries. The greatest positive impact occurred when precision was perfect with no decrease in recall. The sensitivity analysis was conducted over properties of resources, subject categories, query expressions and relevance judgment in observing their relationships with the retrieval performance. The results highlight both the potentials and various issues in applying deduction over metadata and ontologies. Further investigation will be required for additional improvement. The factors that can contribute to degraded performance were identified and addressed. Some guidelines were developed based on the lessons learned from the case study for the development of Semantic Web data and systems

    Reason Maintenance - Conceptual Framework

    Get PDF
    This paper describes the conceptual framework for reason maintenance developed as part of WP2

    Evaluating the Resiliency of Industrial Internet of Things Process Control Using Protocol Agnostic Attacks

    Get PDF
    Improving and defending our nation\u27s critical infrastructure has been a challenge for quite some time. A malfunctioning or stoppage of any one of these systems could result in hazardous conditions on its supporting populace leading to widespread damage, injury, and even death. The protection of such systems has been mandated by the Office of the President of the United States of America in Presidential Policy Directive Order 21. Current research now focuses on securing and improving the management and efficiency of Industrial Control Systems (ICS). IIoT promises a solution in enhancement of efficiency in ICS. However, the presence of IIoT can be a security concern, forcing ICS processes to rely on network based devices for process management. In this research, the attack surface of a testbed is evaluated using protocol-agnostic attacks and the SANS ICS Cyber Kill Chain. This highlights the widening of ICS attack surface due to reliance on IIoT, but also provides a solution which demonstrates one technique an ICS can use to securely rely on IIoT
    corecore