44 research outputs found

    Unifying Cubical Models of Univalent Type Theory

    Get PDF
    We present a new constructive model of univalent type theory based on cubical sets. Unlike prior work on cubical models, ours depends neither on diagonal cofibrations nor connections. This is made possible by weakening the notion of fibration from the cartesian cubical set model, so that it is not necessary to assume that the diagonal on the interval is a cofibration. We have formally verified in Agda that these fibrations are closed under the type formers of cubical type theory and that the model satisfies the univalence axiom. By applying the construction in the presence of diagonal cofibrations or connections and reversals, we recover the existing cartesian and De Morgan cubical set models as special cases. Generalizing earlier work of Sattler for cubical sets with connections, we also obtain a Quillen model structure

    Cubical modal type theories

    Get PDF

    Abstract and concrete type theories

    Get PDF
    In this thesis, we study abstract and concrete type theories. We introduce an abstract notion of a type theory to obtain general results in the semantics of type theories, but we also provide a syntactic way of presenting a type theory to allow us a further investigation into a concrete type theory to obtain consistency and independence results

    Strict Rezk completions of models of HoTT and homotopy canonicity

    Full text link
    We give a new constructive proof of homotopy canonicity for homotopy type theory (HoTT). Canonicity proofs typically involve gluing constructions over the syntax of type theory. We instead use a gluing construction over a "strict Rezk completion" of the syntax of HoTT. The strict Rezk completion is specified and constructed in the topos of cartesian cubical sets. It completes a model of HoTT to an equivalent model satisfying a saturation condition, providing an equivalence between terms of identity types and cubical paths between terms. This generalizes the ordinary Rezk completion of a 1-category

    Set Theory and its Place in the Foundations of Mathematics:a new look at an old question

    Get PDF
    This paper reviews the claims of several main-stream candidates to be the foundations of mathematics, including set theory. The review concludes that at this level of mathematical knowledge it would be very unreasonable to settle with any one of these foundations and that the only reasonable choice is a pluralist one

    Code Generation for Higher Inductive Types

    Full text link
    Higher inductive types are inductive types that include nontrivial higher-dimensional structure, represented as identifications that are not reflexivity. While work proceeds on type theories with a computational interpretation of univalence and higher inductive types, it is convenient to encode these structures in more traditional type theories with mature implementations. However, these encodings involve a great deal of error-prone additional syntax. We present a library that uses Agda's metaprogramming facilities to automate this process, allowing higher inductive types to be specified with minimal additional syntax.Comment: 16 pages, Accepted for presentation in WFLP 201

    Transpension: The Right Adjoint to the Pi-type

    Full text link
    Presheaf models of dependent type theory have been successfully applied to model HoTT, parametricity, and directed, guarded and nominal type theory. There has been considerable interest in internalizing aspects of these presheaf models, either to make the resulting language more expressive, or in order to carry out further reasoning internally, allowing greater abstraction and sometimes automated verification. While the constructions of presheaf models largely follow a common pattern, approaches towards internalization do not. Throughout the literature, various internal presheaf operators (√\surd, Φ/extent\Phi/\mathsf{extent}, Ψ/Gel\Psi/\mathsf{Gel}, Glue\mathsf{Glue}, Weld\mathsf{Weld}, mill\mathsf{mill}, the strictness axiom and locally fresh names) can be found and little is known about their relative expressivenes. Moreover, some of these require that variables whose type is a shape (representable presheaf, e.g. an interval) be used affinely. We propose a novel type former, the transpension type, which is right adjoint to universal quantification over a shape. Its structure resembles a dependent version of the suspension type in HoTT. We give general typing rules and a presheaf semantics in terms of base category functors dubbed multipliers. Structural rules for shape variables and certain aspects of the transpension type depend on characteristics of the multiplier. We demonstrate how the transpension type and the strictness axiom can be combined to implement all and improve some of the aforementioned internalization operators (without formal claim in the case of locally fresh names)

    Twisted Cubes and their Applications in Type Theory

    Full text link
    This thesis captures the ongoing development of twisted cubes, which is a modification of cubes (in a topological sense) where its homotopy type theory does not require paths or higher paths to be invertible. My original motivation to develop the twisted cubes was to resolve the incompatibility between cubical type theory and directed type theory. The development of twisted cubes is still in the early stages and the intermediate goal, for now, is to define a twisted cube category and its twisted cubical sets that can be used to construct a potential definition of (infinity, n)-categories. The intermediate goal above leads me to discover a novel framework that uses graph theory to transform convex polytopes, such as simplices and (standard) cubes, into base categories. Intuitively, an n-dimensional polytope is transformed into a directed graph consists 0-faces (extreme points) of the polytope as its nodes and 1-faces of the polytope as its edges. Then, we define the base category as the full subcategory of the graph category induced by the family of these graphs from all n-dimensional cases. With this framework, the modification from cubes to twisted cubes can formally be done by reversing some edges of cube graphs. Equivalently, the twisted n-cube graph is the result of a certain endofunctor being applied n times to the singleton graph; this endofunctor (called twisted prism functor) duplicates the input, reverses all edges in the first copy, and then pairwisely links nodes from the first copy to the second copy. The core feature of a twisted graph is its unique Hamiltonian path, which is useful to prove many properties of twisted cubes. In particular, the reflexive transitive closure of a twisted graph is isomorphic to the simplex graph counterpart, which remarkably suggests that twisted cubes not only relate to (standard) cubes but also simplices.Comment: PhD thesis (accepted at the University of Nottingham), 162 page
    corecore