32,209 research outputs found

    Uniformly automatic classes of finite structures

    Get PDF
    We investigate the recently introduced concept of uniformly tree-automatic classes in the realm of parameterized complexity theory. Roughly speaking, a class of finite structures is uniformly tree-automatic if it can be presented by a set of finite trees and a tuple of automata. A tree t encodes a structure and an element of this structure is encoded by a labeling of t. The automata are used to present the relations of the structure. We use this formalism to obtain algorithmic meta-theorems for first-order logic and in some cases also monadic second-order logic on classes of finite Boolean algebras, finite groups, and graphs of bounded tree-depth. Our main concern is the efficiency of this approach with respect to the hidden parameter dependence (size of the formula). We develop a method to analyze the complexity of uniformly tree-automatic presentations, which allows us to give upper bounds for the runtime of the automata-based model checking algorithm on the presented class. It turns out that the parameter dependence is elementary for all the above mentioned classes. Additionally we show that one can lift the FPT results, which are obtained by our method, from a class C to the closure of C under direct products with only a singly exponential blow-up in the parameter dependence

    On a stronger reconstruction notion for monoids and clones

    Full text link
    Motivated by reconstruction results by Rubin, we introduce a new reconstruction notion for permutation groups, transformation monoids and clones, called automatic action compatibility, which entails automatic homeomorphicity. We further give a characterization of automatic homeomorphicity for transformation monoids on arbitrary carriers with a dense group of invertibles having automatic homeomorphicity. We then show how to lift automatic action compatibility from groups to monoids and from monoids to clones under fairly weak assumptions. We finally employ these theorems to get automatic action compatibility results for monoids and clones over several well-known countable structures, including the strictly ordered rationals, the directed and undirected version of the random graph, the random tournament and bipartite graph, the generic strictly ordered set, and the directed and undirected versions of the universal homogeneous Henson graphs.Comment: 29 pp; Changes v1-->v2::typos corr.|L3.5+pf extended|Rem3.7 added|C. Pech found out that arg of L5.3-v1 solved Probl2-v1|L5.3, C5.4, Probl2 of v1 removed|C5.2, R5.4 new, contain parts of pf of L5.3-v1|L5.2-v1 is now L5.3,merged with concl of C5.4-v1,L5.3-v2 extends C5.4-v1|abstract, intro updated|ref[24] added|part of L5.3-v1 is L2.1(e)-v2, another part merged with pf of L5.2-v1 => L5.3-v

    High gain observer for structured multi-output nonlinear systems

    Get PDF
    In this note, we present two system structures that characterize classes of multi-input multi-output uniformly observable systems. The first structure is decomposable into a linear and a nonlinear part while the second takes a more general form. It is shown that the second system structure, being more general, contains several system structures that are available in the literature. Two high gain observer design methodologies are presented for both structures and their distinct features are highlighted

    Decision problems for 3-manifolds and their fundamental groups

    Full text link
    We survey the status of some decision problems for 3-manifolds and their fundamental groups. This includes the classical decision problems for finitely presented groups (Word Problem, Conjugacy Problem, Isomorphism Problem), and also the Homeomorphism Problem for 3-manifolds and the Membership Problem for 3-manifold groups.Comment: 31 pages, final versio
    • …
    corecore