410 research outputs found

    A robust multigrid method for the time-dependent Stokes problem

    Get PDF
    In the present paper we propose an all-at-once multigrid method for generalized Stokes flow problems. Such problems occur as subproblems in implicit time-stepping approaches for time-dependent Stokes problems. The discretized optimality system is a large scale linear system whose condition number depends on the grid size of the spacial discretization and of the length of the time step. Recently, for this problem an all-at-once multigrid method has been proposed, where in each smoothing step the Poisson problem has to be solved (approximatively) for the pressure field. In the present paper, we propose an all-at-once multigrid method where the solution of such subproblems is not needed. We prove that the proposed method shows robust convergence behavior in the grid size of the spacial discretization and of the length of the time-step

    Stability Estimates and Structural Spectral Properties of Saddle Point Problems

    Full text link
    For a general class of saddle point problems sharp estimates for Babu\v{s}ka's inf-sup stability constants are derived in terms of the constants in Brezzi's theory. In the finite-dimensional Hermitian case more detailed spectral properties of preconditioned saddle point matrices are presented, which are helpful for the convergence analysis of common Krylov subspace methods. The theoretical results are applied to two model problems from optimal control with time-periodic state equations. Numerical experiments with the preconditioned minimal residual method are reported

    Monolithic Overlapping Schwarz Domain Decomposition Methods with GDSW Coarse Spaces for Saddle Point Problems

    Get PDF
    Monolithic overlapping Schwarz preconditioners for saddle point problems of Stokes, Navier-Stokes, and mixed linear elasticity ty e are presented. For the first time, coarse spaces obtained from the GDSW (Generalized Dryja-Smith-Widlund) approach are used in such a setting. Numerical results of our parallel implementation are presented for several model problems. In particular, cases are considered where the problem cannot or should not b e reduced using local static condensation, e.g., Stokes, Navier-Stokes or mixed elasticity problems with continuous pressure spaces. In the new monolithic preconditioners, the local overlapping problems and the coarse problem are saddle point problems with the same structure as the original problem. Our parallel implementation of these preconditioners is based on the FROSch (Fast and Robust Overlapping Schwarz) library, which is part of the Trilinos package ShyLU. The implementation is algebraic in the sense that the preconditioners can be constructed from the fully assembled stiffness matrix and information about the block structure of the problem. Parallel scalability results for several thousand cores for Stokes, Navier-Stokes, and mixed linear elasticity model problems are reported. Each of the local problems is solved using a direct solver in serial mo de, whereas the coarse problem is solved using a direct solver in serial or MPI-parallel mode or using an MPI-parallel iterative Krylov solve
    corecore