Monolithic overlapping Schwarz preconditioners for saddle point problems of Stokes, Navier-Stokes, and mixed linear elasticity ty e are presented. For the first time, coarse spaces obtained from the GDSW (Generalized Dryja-Smith-Widlund) approach are used in such a setting. Numerical results of our parallel implementation are presented for several model problems. In particular, cases are considered where the problem cannot or should not b e reduced using local static condensation, e.g., Stokes, Navier-Stokes or mixed elasticity problems with continuous pressure spaces. In the new monolithic preconditioners, the local overlapping problems and the coarse problem are saddle point problems with the same structure as the original problem. Our parallel implementation of these preconditioners is based on the FROSch (Fast and Robust Overlapping Schwarz) library, which is part of the Trilinos package ShyLU. The implementation is algebraic in the sense that the preconditioners can be constructed from the fully assembled stiffness matrix and information about the block structure of the problem. Parallel scalability results for several thousand cores for Stokes, Navier-Stokes, and mixed linear elasticity model problems are reported. Each of the local problems is solved using a direct solver in serial mo de, whereas the coarse problem is solved using a direct solver in serial or MPI-parallel mode or using an MPI-parallel iterative Krylov solve