1,422 research outputs found

    Resolving Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations

    Full text link
    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.Comment: Comments welcom

    Constant approximation algorithms for embedding graph metrics into trees and outerplanar graphs

    Full text link
    In this paper, we present a simple factor 6 algorithm for approximating the optimal multiplicative distortion of embedding a graph metric into a tree metric (thus improving and simplifying the factor 100 and 27 algorithms of B\v{a}doiu, Indyk, and Sidiropoulos (2007) and B\v{a}doiu, Demaine, Hajiaghayi, Sidiropoulos, and Zadimoghaddam (2008)). We also present a constant factor algorithm for approximating the optimal distortion of embedding a graph metric into an outerplanar metric. For this, we introduce a general notion of metric relaxed minor and show that if G contains an alpha-metric relaxed H-minor, then the distortion of any embedding of G into any metric induced by a H-minor free graph is at meast alpha. Then, for H=K_{2,3}, we present an algorithm which either finds an alpha-relaxed minor, or produces an O(alpha)-embedding into an outerplanar metric.Comment: 27 pages, 4 figires, extended abstract to appear in the proceedings of APPROX-RANDOM 201
    • …
    corecore