503 research outputs found

    A Combined Preconditioning Strategy for Nonsymmetric Systems

    Full text link
    We present and analyze a class of nonsymmetric preconditioners within a normal (weighted least-squares) matrix form for use in GMRES to solve nonsymmetric matrix problems that typically arise in finite element discretizations. An example of the additive Schwarz method applied to nonsymmetric but definite matrices is presented for which the abstract assumptions are verified. A variable preconditioner, combining the original nonsymmetric one and a weighted least-squares version of it, is shown to be convergent and provides a viable strategy for using nonsymmetric preconditioners in practice. Numerical results are included to assess the theory and the performance of the proposed preconditioners.Comment: 26 pages, 3 figure

    On the Convergence of the Laplace Approximation and Noise-Level-Robustness of Laplace-based Monte Carlo Methods for Bayesian Inverse Problems

    Get PDF
    The Bayesian approach to inverse problems provides a rigorous framework for the incorporation and quantification of uncertainties in measurements, parameters and models. We are interested in designing numerical methods which are robust w.r.t. the size of the observational noise, i.e., methods which behave well in case of concentrated posterior measures. The concentration of the posterior is a highly desirable situation in practice, since it relates to informative or large data. However, it can pose a computational challenge for numerical methods based on the prior or reference measure. We propose to employ the Laplace approximation of the posterior as the base measure for numerical integration in this context. The Laplace approximation is a Gaussian measure centered at the maximum a-posteriori estimate and with covariance matrix depending on the logposterior density. We discuss convergence results of the Laplace approximation in terms of the Hellinger distance and analyze the efficiency of Monte Carlo methods based on it. In particular, we show that Laplace-based importance sampling and Laplace-based quasi-Monte-Carlo methods are robust w.r.t. the concentration of the posterior for large classes of posterior distributions and integrands whereas prior-based importance sampling and plain quasi-Monte Carlo are not. Numerical experiments are presented to illustrate the theoretical findings.Comment: 50 pages, 11 figure

    Natural preconditioning and iterative methods for saddle point systems

    Get PDF
    The solution of quadratic or locally quadratic extremum problems subject to linear(ized) constraints gives rise to linear systems in saddle point form. This is true whether in the continuous or the discrete setting, so saddle point systems arising from the discretization of partial differential equation problems, such as those describing electromagnetic problems or incompressible flow, lead to equations with this structure, as do, for example, interior point methods and the sequential quadratic programming approach to nonlinear optimization. This survey concerns iterative solution methods for these problems and, in particular, shows how the problem formulation leads to natural preconditioners which guarantee a fast rate of convergence of the relevant iterative methods. These preconditioners are related to the original extremum problem and their effectiveness---in terms of rapidity of convergence---is established here via a proof of general bounds on the eigenvalues of the preconditioned saddle point matrix on which iteration convergence depends

    Preconditioned NonSymmetric/Symmetric Discontinuous Galerkin Method for Elliptic Problem with Reconstructed Discontinuous Approximation

    Full text link
    In this paper, we propose and analyze an efficient preconditioning method for the elliptic problem based on the reconstructed discontinuous approximation method. We reconstruct a high-order piecewise polynomial space that arbitrary order can be achieved with one degree of freedom per element. This space can be directly used with the symmetric/nonsymmetric interior penalty discontinuous Galerkin method. Compared with the standard DG method, we can enjoy the advantage on the efficiency of the approximation. Besides, we establish an norm equivalence result between the reconstructed high-order space and the piecewise constant space. This property further allows us to construct an optimal preconditioner from the piecewise constant space. The upper bound of the condition number to the preconditioned symmetric/nonsymmetric system is shown to be independent of the mesh size. Numerical experiments are provided to demonstrate the validity of the theory and the efficiency of the proposed method

    An asymptotically superlinearly convergent semismooth Newton augmented Lagrangian method for Linear Programming

    Get PDF
    Powerful interior-point methods (IPM) based commercial solvers, such as Gurobi and Mosek, have been hugely successful in solving large-scale linear programming (LP) problems. The high efficiency of these solvers depends critically on the sparsity of the problem data and advanced matrix factorization techniques. For a large scale LP problem with data matrix AA that is dense (possibly structured) or whose corresponding normal matrix AATAA^T has a dense Cholesky factor (even with re-ordering), these solvers may require excessive computational cost and/or extremely heavy memory usage in each interior-point iteration. Unfortunately, the natural remedy, i.e., the use of iterative methods based IPM solvers, although can avoid the explicit computation of the coefficient matrix and its factorization, is not practically viable due to the inherent extreme ill-conditioning of the large scale normal equation arising in each interior-point iteration. To provide a better alternative choice for solving large scale LPs with dense data or requiring expensive factorization of its normal equation, we propose a semismooth Newton based inexact proximal augmented Lagrangian ({\sc Snipal}) method. Different from classical IPMs, in each iteration of {\sc Snipal}, iterative methods can efficiently be used to solve simpler yet better conditioned semismooth Newton linear systems. Moreover, {\sc Snipal} not only enjoys a fast asymptotic superlinear convergence but is also proven to enjoy a finite termination property. Numerical comparisons with Gurobi have demonstrated encouraging potential of {\sc Snipal} for handling large-scale LP problems where the constraint matrix AA has a dense representation or AATAA^T has a dense factorization even with an appropriate re-ordering.Comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF fil
    • …
    corecore