We present and analyze a class of nonsymmetric preconditioners within a
normal (weighted least-squares) matrix form for use in GMRES to solve
nonsymmetric matrix problems that typically arise in finite element
discretizations. An example of the additive Schwarz method applied to
nonsymmetric but definite matrices is presented for which the abstract
assumptions are verified. A variable preconditioner, combining the original
nonsymmetric one and a weighted least-squares version of it, is shown to be
convergent and provides a viable strategy for using nonsymmetric
preconditioners in practice. Numerical results are included to assess the
theory and the performance of the proposed preconditioners.Comment: 26 pages, 3 figure