98 research outputs found

    Tunable n-path notch filters for blocker suppression: modeling and verification

    Get PDF
    N-path switched-RC circuits can realize filters with very high linearity and compression point while they are tunable by a clock frequency. In this paper, both differential and single-ended N-path notch filters are modeled and analyzed. Closed-form equations provide design equations for the main filtering characteristics and nonidealities such as: harmonic mixing, switch resistance, mismatch and phase imbalance, clock rise and fall times, noise, and insertion loss. Both an eight-path single-ended and differential notch filter are implemented in 65-nm CMOS technology. The notch center frequency, which is determined by the switching frequency, is tunable from 0.1 to 1.2 GHz. In a 50- environment, the N-path filters provide power matching in the passband with an insertion loss of 1.4–2.8 dB. The rejection at the notch frequency is 21–24 dB,P1 db> + 2 dBm, and IIP3 > + 17 dBm

    A 4-element phased-array system with simultaneous spatial- and frequency-domain filtering at the antenna inputs

    Get PDF
    To reject strong interference in excess of 0 dBm, a 4- element LO-phase shifting phased-array receiver with 8-phase passive mixers terminated by baseband capacitors is presented. The passive mixers upconvert both the spatial and frequency domain filtering from baseband to RF, hence realizing blocker suppression directly at the antenna inputs. A comprehensive mathematical model provides a set of closed-form equations describing the spatial and frequency domain filtering including imperfections. A prototype is realized in 28 nm CMOS. It exploits third harmonic reception to achieve a wide RF-frequency range from 0.6–4.5 GHz at 34–119 mW power dissipation, while also providing impedance matching. Out of the band/beam, a 1 dB-compression point as high as +12/+10 dBm has been measured. The 1-element noise figure over the RF-frequency range is 4–6.3 dB, while in-beam/band IIP3 values of 0– +2.6 dBm are measured. This proposed technique can be instrumental to make RF receivers more robust for interference, while still being flexibly tunable in frequency

    Integrated measurement techniques for RF-power amplifiers

    Get PDF

    A delay spread cancelling waveform characterizer for RF power amplifiers

    Get PDF
    A two channel 65 nm CMOS RF-waveform characterizer is presented that enables multi-harmonic Adaptive Matching Networks (AMN) or Adaptive Digital Pre-Distortion (ADPD) in RF-power amplifiers. The characterizer measures the DC component and the first 3 harmonics of RF signals by applying a DFT to 8 (ideally) equally spaced quasi-DC output voltages. Conventionally in these types of systems accuracy is limited by sample timing accuracies, which in our case are mainly due to delay cell mismatch. We introduce a novel way to cancel delay cell mismatch, that significantly increases measurement accuracy at the cost of only a small power and area increase. The RF-waveform characterizer achieves 6.8-bit measurement linearity together with a (clock feedthrough limited) 24 dB SFDR. The measured power consumption for our proof-of-principle demonstrator is 18.6 mW at a maximum input signal frequency of 1.1 GHz under continuous operation

    Saw-Less radio receivers in CMOS

    Get PDF
    Smartphones play an essential role in our daily life. Connected to the internet, we can easily keep in touch with family and friends, even if far away, while ever more apps serve us in numerous ways. To support all of this, higher data rates are needed for ever more wireless users, leading to a very crowded radio frequency spectrum. To achieve high spectrum efficiency while reducing unwanted interference, high-quality band-pass filters are needed. Piezo-electrical Surface Acoustic Wave (SAW) filters are conventionally used for this purpose, but such filters need a dedicated design for each new band, are relatively bulky and also costly compared to integrated circuit chips. Instead, we would like to integrate the filters as part of the entire wireless transceiver with digital smartphone hardware on CMOS chips. The research described in this thesis targets this goal. It has recently been shown that N-path filters based on passive switched-RC circuits can realize high-quality band-select filters on CMOS chips, where the center frequency of the filter is widely tunable by the switching-frequency. As CMOS downscaling following Moore’s law brings us lower clock-switching power, lower switch on-resistance and more compact metal-to-metal capacitors, N-path filters look promising. This thesis targets SAW-less wireless receiver design, exploiting N-path filters. As SAW-filters are extremely linear and selective, it is very challenging to approximate this performance with CMOS N-path filters. The research in this thesis proposes and explores several techniques for extending the linearity and enhancing the selectivity of N-path switched-RC filters and mixers, and explores their application in CMOS receiver chip designs. First the state-of-the-art in N-path filters and mixer-first receivers is reviewed. The requirements on the main receiver path are examined in case SAW-filters are removed or replaced by wideband circulators. The feasibility of a SAW-less Frequency Division Duplex (FDD) radio receiver is explored, targeting extreme linearity and compression Irequirements. A bottom-plate mixing technique with switch sharing is proposed. It improves linearity by keeping both the gate-source and gate-drain voltage swing of the MOSFET-switches rather constant, while halving the switch resistance to reduce voltage swings. A new N-path switch-RC filter stage with floating capacitors and bottom-plate mixer-switches is proposed to achieve very high linearity and a second-order voltage-domain RF-bandpass filter around the LO frequency. Extra out-of-band (OOB) rejection is implemented combined with V-I conversion and zero-IF frequency down-conversion in a second cross-coupled switch-RC N-path stage. It offers a low-ohmic high-linearity current path for out-of-band interferers. A prototype chip fabricated in a 28 nm CMOS technology achieves an in-band IIP3 of +10 dBm , IIP2 of +42 dBm, out-of-band IIP3 of +44 dBm, IIP2 of +90 dBm and blocker 1-dB gain-compression point of +13 dBm for a blocker frequency offset of 80 MHz. At this offset frequency, the measured desensitization is only 0.6 dB for a 0-dBm blocker, and 3.5 dB for a 10-dBm blocker at 0.7 GHz operating frequency (i.e. 6 and 9 dB blocker noise figure). The chip consumes 38-96 mW for operating frequencies of 0.1-2 GHz and occupies an active area of 0.49 mm2. Next, targeting to cover all frequency bands up to 6 GHz and achieving a noise figure lower than 3 dB, a mixer-first receiver with enhanced selectivity and high dynamic range is proposed. Capacitive negative feedback across the baseband amplifier serves as a blocker bypassing path, while an extra capacitive positive feedback path offers further blocker rejection. This combination of feedback paths synthesizes a complex pole pair at the input of the baseband amplifier, which is up-converted to the RF port to obtain steeper RF-bandpass filter roll-off than the conventional up-converted real pole and reduced distortion. This thesis explains the circuit principle and analyzes receiver performance. A prototype chip fabricated in 45 nm Partially Depleted Silicon on Insulator (PDSOI) technology achieves high linearity (in-band IIP3 of +3 dBm, IIP2 of +56 dBm, out-of-band IIP3 = +39 dBm, IIP2 = +88 dB) combined with sub-3 dB noise figure. Desensitization due to a 0-dBm blocker is only 2.2 dB at 1.4 GHz operating frequency. IIFinally, to demonstrate the performance of the implemented blocker-tolerant receiver chip designs, a test setup with a real mobile phone is built to verify the sensitivity of the receiver chip for different practical blocking scenarios

    Interference-robust CMOS receivers for IoT:Highly linear RF front-ends at low power

    Get PDF
    Wireless technologies have brought Internet access to more than half of the world’s population in the last decade. Nowadays, Internet-of-Things (IoT) technology extends the internet connectivity to sensor nodes embedded in machines, animals, and plants. It will soon put us in a realm of billions of interconnected sensor nodes networking and communicating with each other. Such unprecedented growth of wireless devices puts a big challenge of sustainable and robust connectivity in front of us. Concretely, this challenge demands a wireless sensor node with low power and robust connectivity. Radios are the physical interface for sensor nodes with the external world and are one of the power-hungry components in sensor nodes. Hence it is imperative to make them energy-efficient and interference-robust. This thesis explores CMOS passive mixer-first receiver topology to enhance the interference tolerance of receivers in IoT radios. The dissertation proposes a novel N-path filter/mixer topology at the circuit level and a multipath cross-correlation technique at the system level. Two test-chips of mixer-first receiver front ends, using these techniques, are implemented in CMOS FDSOI 22nm technology as a proof-of-concept. The experimental prototypes demonstrate voltage gain in passive mixers and exhibit high-Q widely-tunable RF filtering, large out-of-band and harmonic interferer tolerance, and moderate noise figure while consuming much lower power than several state-of-the-art receivers

    Channelization Techniques For Wideband Radios

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2017. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); x, 110 pages.From the very start of mobile communications, wireless data traffic volume and the number of applications have increased continuously and this continued increase will eventually necessitate the use of wider signal bandwidths by the fundamental constraints imposed by Shannon’s theorem. Additionally, the air channel is a common limited resource that is shared by all users and applications. While this limited wireless resource has mostly been pre-allocated, the utilization at any given time is often very low. For this environment, cognitive radio and carrier aggregation are potential solutions. Both cognitive radio and carrier aggregation require the processing of wideband signals unlike what is normally the focus of conventional narrow band receivers. This, in turn, makes it necessary to design receivers with a large BW and high dynamic range, and these conflicting requirements typically form the bottleneck in existing systems. Here, we discuss channelization techniques using an analog FFT (fast Fourier transform) to solve the bottleneck. First, a fully integrated hybrid filter bank ADC using an analog FFT is presented. The proposed structure enables the signals in each channel of a wideband system to be separately digitized using the full dynamic range of the ADC, so the small signals in wideband can benefit in terms of lowered quantization noise while accommodating large in-band signals. The prototype which is implemented in TSMC’s 40nm CMOS GP process with VGA gains ranging from 1 to 4 shows 90.4mW total power consumption for both the analog and digital sections. Second, analog polyphase-FFT technique is introduced. Polyphase-FFT allows for low power implementations of high performance multi-channel filter banks by utilizing computation sharing not unlike a standard FFT. Additionally, it enables a longer “effective window length” than is possible in a standard FFT. This characteristic breaks the trade-off between the main-lobe width and the side-lobe amplitudes in normal finite impulse response (FIR) filters. The 4-channel I/Q prototype is implemented in TSMC’s 65nm GP technology. The measured trans- fer function shows >38dB side-lobe suppression at 1GS/s operation. The average measured IIP3 is +25dBm differential power and the total integrated output noise is 208µVrms. The total power consumption for the polyphase-FFT filter bank (8- channels total) is 34.6mW (34.6pJ/conv)
    • …
    corecore