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Abstract

Switched-Capacitor RF Receivers for High
Interferer Tolerance

Yang Xu

The demand for broadband wireless communication is growing rapidly, requiring more spec-

trum resources. However, spectrum usage is inefficient today because different frequency bands are

allocated for different communication standards and most of the bands are not highly occupied.

Cognitive radio systems with dynamic spectrum access improve spectrum efficiency, but they

require wideband tunable receiver hardware. In such a system, a preselect filter is required for the

RF receiver front end, because an out-of-band (OB) interferer can block the front end or cause

distortion, desensitizing the receiver. In a conventional solution, off-chip passive filters, such as

surface-acoustic-wave (SAW) filters, are used to reject the OB interferer. However, such passive

filters are hardly tunable, have large area, and are very expensive. On-chip, high-selectivity, linearly

tunable RF filters are, therefore, a hot topic in RF front-end research. Switched-capacitor (SC) RF

filters, such as N-path filters, feature good linearity and tunability, making them good candidates

for tunable RF filters. However, N-path filters have some drawbacks: notably, a poor harmonic

response and limited close-by blocker tolerance.

This thesis presents the design and implementation of several interferer-tolerant receivers based



on SC technology. We present an RF receiver with a harmonic-rejecting N-path filter to improve

the harmonic response of the N-path bandpass filter. It features tunable narrowband filtering and

high attenuation of the third- and fifth-order LO harmonics at the LNA output, which improves

the blocker tolerance at LO harmonics. The 0.2–1 GHz RF receiver is implemented in a 65 nm

CMOS process. The blocker 1 dB compression point (B1dB) is −2.4 dBm at a 20 MHz offset,

and remains high at the third- and fifth-order LO harmonics. The LNA’s reverse isolation helps

keep the LO emission below −90 dBm. A two-stage harmonic-rejection approach offers a > 51dB

harmonic-rejection ratio at the third- and fifth-order LO harmonics without calibration.

To improve tolerance for close-by blockers, we further present an SC RF receiver achiev-

ing high-order, tunable, highly linear RF filtering. We implement RF input impedance match-

ing, N-path filtering, high-order discrete-time infinite-impulse response (IIR) filtering and down-

conversion using only switches and capacitors in a 0.1–0.7 GHz prototype with tunable center

frequency, programmable filter order, and very high tolerance for OB blockers. The 40 nm CMOS

receiver consumes 38.5–76.5 mA, achieves 40 dB gain, 24 dBm OB IIP3, 14.7 dBm B1dB for a

30 MHz blocker offset, 6.8–9.7 dB noise figure, and > 66dB calibrated harmonic rejection ratio.

The key drawback of our earlier SC receiver is the relatively high theoretical lower limit of

the noise figure. To improve the noise performance, we developed a 0.1–0.6 GHz chopping SC RF

receiver with an integrated blocker detector. We achieve RF impedance matching, high-order OB

interferer filtering, and flicker-noise chopping with passive SC circuits only. The 34–80 mW 65 nm

receiver achieves 35 dB gain, 4.6–9 dB NF, 31 dBm OB-IIP3, and 15 dBm B1dB. The 0.2 mW



integrated blocker detector detects large OB blockers with only a 1 µs response time. The filter

order can be adapted to blocker power with the blocker detector.
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Chapter 1

Introduction

1.1 Evolution of Wireless Communications

The demand for wireless communications has grown very quickly [1], and this high-speed com-

munication has significantly changed people’s lifestyle. Fig. 1.1 shows the data rates of differ-

ent cellular standards. In 1991, when the Global Systems for Mobile (GSM) communications

was released, the data rate was 9.6 kbps and only supported voice and short-message services.

Twenty-six years later, the data rate of Long-Term Evolution-Advanced (LTE-A) is 1 Gbps, which

is more than 100,000 times faster than GSM. Today, people can use a smartphone to watch online

videos using LTE. Apart from cellular communication, other wireless connectivity systems (such

as WLAN/WiFi, Bluetooth, RFID, NFC, and ZigBee) and the Global Navigation Satellite System

(GNSS; as well as GPS, GLONASS, and BeiDou) also play a significant role in our daily lives.

One of the bottlenecks to achieving a high data rate in wireless communication is inefficient

1
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Figure 1.1: Data rates of cellular communications [1].

Figure 1.2: United States frequency allocation chart (30 MHz–3 GHz) [2].

Figure 1.3: Measured radio spectrum during a day [3].
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frequency allocation. In the United States, the radio spectrum is regulated by the Federal Communi-

cations Commission (FCC) and the National Telecommunications and Information Administration

(NTIA). Fig. 1.2 [2] shows the frequency allocation from 30 MHz to 3 GHz. Different standards are

allocated in different frequency bands. However, if we measure the radio spectrum during a day [3]

(Fig. 1.3), we can find some bands are very busy (e.g., GSM) while some bands are almost unused.

The radio spectrum is a costly and limited natural resource. However, the current static frequency

allocation leads to low spectrum-use efficiency. Going forward, dynamic frequency allocation can

make the spectrum use more efficient.

Cognitive radio (CR) technology [6] was proposed to achieve dynamic spectrum access. CR

is a wireless architecture in which a communication system does not operate in a fixed assigned

band. Rather, each device automatically finds an appropriate empty band for its communication.

There are two main methods for the secondary, cognitive, user to avoid interfering with primary

or licensed users. The first is to use spectrum sensing [7], which uses a spectrum detector to sense

the primary user’s frequency band. The second to use a geolocation database [8]. The database

system protects the primary users, ensuring that any interference is below acceptable thresholds,

and enables the secondary users to access unused frequency bands. CR must be reconfigurable to

adapt its RF center frequency and bandwidth to the available spectrum. Therefore, tunable receiver

hardware is a key CR component.

Recently, the unlicensed devices have been allowed to operate on TV white spaces (TVWS),

frequencies in the TV bands in areas where they are not used by licensed services [9]. The migra-

tion from analog TV to digital TV has freed up several VHF and UHF bands (48 MHz–860 MHz)
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due to the high spectral efficiency of digital TV. Many wireless standards based on the CR con-

cept are emerging for TVWS communications, including IEEE 802.22 [10], 802.11af [11], and

802.15.4m [12]. IEEE 802.22 provides long-range (30 km) connectivity in rural areas to build wire-

less regional area networks (WRAN). IEEE 802.11af is a WiFi-like wireless local area network

(WLAN). IEEE 802.15.4m is a low-data-rate wireless personal area network (WPAN) suitable for

the Internet of Things (IoT) and machine-to-machine (M2M) communications.

1.2 Evolution of CMOS RF Receiver Front Ends

In the early 1990s, RF receiver front ends were mainly implemented in bipolar processes with

standalone circuit building blocks. The development of the CMOS RF technique [13] in the mid-

1990s dramatically improved the scale of integration and reduced the cost of RF receivers. Process

scaling and circuit innovation were the two main engines driving the evolution of the CMOS RF

receiver front end.

In first-phase integrated CMOS RF receivers [14–16] (Fig. 1.4(a)), inductor-degenerated LNA

and CMOS Gilbert-cell-based mixers were the most popular circuit typologies in micron-scale

process. Inductor-degenerated LNAs achieved a good noise figure and provided RF gain. However,

it required bulky on-chip or off-chip inductors and had a narrow bandwidth. The CMOS Gilbert

cell also had limited linearity.

With better CMOS process, the parasitic capacitance of the MOS transistors was reduced,

so that the transistors could operate at higher frequencies. In the 2000s, inductorless LNAs with

smaller area and wide RF bandwidth became more popular. These were implemented with resis-
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……

Figure 1.4: (a) In the 1990s, inductor-degenerated LNAs and active mixers were the popular RF
front-end circuit. (b) In the 2000s, wideband LNAs (e.g., noise-canceling LNAs) and passive mix-
ers became popular, thanks to faster transistors. (c) In the 2010s, switch-based RF circuits (e.g.,
the N-path filter) further improved receiver performance with advanced CMOS process.
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tive feedback [17, 18] and innovated noise-canceling techniques [19, 20]. With faster transistors,

the switch-based passive mixer [21] offered better linearity (Fig. 1.4(b)). However, without the

narrowband resonance tank, the wideband LNA had limited out-of-band (OB) linearity.

In recent years (Fig. 1.4(c)), more switch-based RF techniques have appeared due to the better

switch performance with advanced process. N-path bandpass filters [22–26] and mixer-first re-

ceivers [27–31] use the switches to achieve better OB linearity with tunable center frequency. My

research focuses on further investigating how to use advanced CMOS process to improve receiver

performance.

1.3 Motivation

To receive a narrowband signal with wide tuning range, a wideband tunable receiver is the key

block in CR to achieve dynamic spectrum access. The wideband receiver front end needs to achieve

a tunable center frequency, low noise, and OB interference tolerance. High OB interference toler-

ance is the key challenge in receiver design.

In the commercial receiver, which also needs to support different RF bands, OB interference

tolerance is achieved with multiple off-chip filters. Fig. 1.5 shows the block diagram of a multiband

2G/3G/4G LTE transceiver [4]. On the receiver side, different bands can share the synthesizer,

down-convert, and baseband circuits. However, dedicated off-chip filters and LNAs are used for

different bands. The high-Q off-chip filter for a certain center frequency can strongly attenuate the

OB interfere to relax the RF front end’s linearity requirements.

In CR systems, the goal is to replace high-quality fixed off-chip RF filters with tunable RF
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Figure 1.5: Block diagram of a multiband LTE transceiver [4].
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filtering to realize an interference-tolerant tunable RF receiver front end. RF MEMS filters have

been proposed to achieve the off-chip high-quality tunable filters, but they suffer from a limited

tuning range, in-band loss and large size [32]. Conventional on-chip RF filters, such as LC [33]

and Gm-C [34], suffer from either a low quality (Q) factor, small tuning range, or limited linear-

ity [25]. Without wide-tuning, high-Q, linear filters, wideband receivers suffer from the impact of

the large continuous-wave (CW) close-by blockers that saturate the RF front end and desensitize

the receiver. Even if the interferer power is not large enough to block the desired signal, the in-

termodulation and cross-modulation caused by the OB interferer in FDD, along with coexistence

scenarios, can degrade the signal-to-noise ratio.

Switched-capacitor (SC) RF filters, such as N-path filters implemented in CMOS, offer tunable

high-quality filtering [22, 23, 26, 35–37] to improve OB linearity. Furthermore, the SC approach

benefits from process scaling, which provides faster switches and a lower power clock generator

[38]. In this thesis, we use the SC technique to overcome the drawbacks of conventional SC RF

filters, such as harmonic response and limited filter order.

1.4 Organization of the Thesis

Chapter 2 summarize the SC techniques used in RF receivers. Chapter 3 proposes an RF front

end with a harmonic-rejecting N-path filter. This front end mitigates the N-path filter’s harmonic-

response issue and features tunable narrowband filtering and high attenuation of the third- and

fifth-order LO harmonics at the LNA output, improving the blocker tolerance at LO harmonics.

Chapters 4, 5, and 6 introduce the SC RF front ends, achieving equivalent high-order, tunable,



9

highly linear RF filtering to improve the OB blocker tolerance. RF input impedance matching, N-

path filtering, high-order discrete-time infinite-impulse response (IIR) filtering, and down conver-

sion are implemented using only switches and capacitors. The basic SC RF front end is proposed

in Chapter 4 achieving rail-to-rail blocker tolerance. Two different methods to improve the noise

performance of the SCRX are proposed in Chapters 5 and 6 using chopping techniques and passive

gain. Chapter 7 concludes.



Chapter 2

Review of Switched-Capacitor Techniques

for RF Receiver Design

Thanks to the simple switches and high impedance nodes of the CMOS process, SC circuits can be

easily implemented and play a key role in analog signal processing. Fig. 2.1 shows the trend of SC

papers published in the Journal of Solid-State Circuits (JSSC) since the 1970s. It was a hot topic

in 1980s. Most of the basic SC structures were developed (e.g., active SC filters [39–41], N-path

filters [42–44]) at that time. In recent years, SC research is trending up because, with advanced

CMOS process, SC applications have expanded to RF front ends such as RF N-path bandpass

filter [23–26] and SC RF power amplifier–transmitters [45–48].

In RF receivers, SC techniques are used to implement filters eliminating large undesired signals

and relaxing the dynamic-range requirements of subsequent circuits [49–53]. Compared with other

analog filters such as active-RC and Gm-C filters, the corner frequencies of SC filters are well

10
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Figure 2.1: Trend of switched-capacitor publications in JSSC (1970s–Feb. 2017).

controlled and less sensitive to PVT variations since they are set by the capacitor ratio and can be

programmed by the tunable capacitor banks. Active discrete-time (DT) filters, passive DT filters,

and N-path filters are the three popular blocks used in RF receivers.

2.1 Active DT Filters

Active DT SC filters can be used as baseband filters in an RF receiver. Fig. 2.2 shows a simple ac-

tive SC filter. The switches can be implemented by MOS transistors and driven by nonoverlapping

clocks. The input voltage is sampled on C1 in p1, and the charge on C1 is transferred to C2 in p2.
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Figure 2.2: Active switched-capacitor filter.

Assuming the opamp has infinite gain, the filter’s transfer function can be written as

H(z) =
Vout(z)
Vin(z)

=
C1

C2
· z−1

1− z−1 . (2.1)

With an active opamp, any type of filter can be synthesized [54]. The key drawback of the active

DT SC filter is that the opamp mainly limits its performance. Considering the finite gain of the

opamp, the filter’s transfer function is

H(z) =
Vout(z)
Vin(z)

=
C1

C2
·

C2A
C2(1+A)+C1

z−1

1− C2(1+A)
C2(1+A)+C1

z−1
, (2.2)

where A is the opamp gain. Opamp gain drops at high frequencies due to finite bandwidth, which

increases the filter’s gain and phase errors. The opamp’s unity-gain frequency sets the active DT

SC circuit’s upper-limit clock rate. The clock frequency must be less than 1/5 of the opamp unity-

gain frequency to keep the effects of finite opamp bandwidth negligible [55]. The bandwidth of the
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Figure 2.3: Passive switched-capacitor finite impulse response filter.

active DT SC filter is less than half the clock frequency and therefore limited to tens of megahertz.

Due to the limited clock frequency, active DT filters are always placed at the latter stages of the

SC filter chain [56], and decimation is required to reduce the active filter’s clock rate.

2.2 Passive DT Filters

Lacking the active opamp, passive DT SC filters simply rely on charge sharing to achieve the

charge transfer. Passive SC filters’ operation frequency is not limited by the opamp unity-gain

bandwidth and can take full advantage of CMOS process scaling. There are two types of passive

DT filters, finite impulse response (FIR) and infinite impulse response (IIR). More complex filters

can be built from these basic structures.

An FIR filter is achieved by summing the delayed and weighted input signal. The capacitor can
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Figure 2.4: Passive switched-capacitor infinite impulse response filter.

be considered as a charge memory, and the SC circuit is a perfect delay cell with the weighting

achieved by scaling the capacitors. Fig. 2.3 shows a time-interleaved, first-order FIR filter. The

input charge is sampled on C1 and C2 in p1. Each capacitor stores a charge of CiQin/(C1 +C2). In

p3, the capacitors sampling at p1 and p2 are connected to the output. Thus, the output signal is

Qout(z) =
C2 +C1z−1

C1 +C2
z−1Qin(z). (2.3)

The capacitors are reset to ground after the output is formed to prepare for the input sampling

in next cycle. The input charge is consecutively sampled on the four SC banks. High-order FIR

filter can be achieved by using more capacitor banks.

The IIR filter uses the input signal and past output signals to obtain the current output value,

requiring less memory than the FIR filter to achieve the same filter selectivity. Fig. 2.4 shows a

first-order IIR filter. In contrast to the FIR filter, CH is not reset each cycle, so it can store the past
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output charge. The output signal is

Qout(z) =
1−α

1−αz−1 z−1Qin(z), (2.4)

where α = CH/(CR +CH). High-order IIR filters can be achieved by rotating the charge among

several history capacitors [57].

The passive SC filter also has some drawbacks. In contrast to active filters, it may not be able

to synthesize every type of filter [57], and it is hard to achieve signal gain to suppress the noise of

the next stage. Most passive SC filters are used as baseband filters and driven by transconductance

(Gm) cells, which makes the filter linearity limited by Gm.

2.3 RF N-Path Filters

The N-path bandpass filter [22,58] has recently been popular in RF front-end design [23,26,35–37]

because it provides narrowband filtering with a tunable center frequency. Fig. 2.5(a) shows a N-

path filter with N SC banks. Each switch is driven by a nonoverlapping clock. The RF signal is

first down-converted to baseband and filtered by Cbb. It is then up-converted back to its original

frequency. N-path filters feature narrow bandwidth, tunable center frequency and good linearity.

The bandwidth depends on the RC constant at the baseband frequency. Achieving narrowband low-

pass filtering is much easier than narrowband bandpass filtering. The center frequency is set by the

clock frequency, achieving a large tuning range. Since the N-path filter can be directly connected

to the RF input, linearity is limited only by the switches, and high linearity can be achieved.
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Figure 2.5: (a) Schematic and (b) frequency response of the N-path bandpass filter.

Although the N-path filter is a good candidate for high-selectivity tunable RF bandpass filter-

ing, it has drawbacks: harmonic response, limited filter order, and poor OB attenuation. Fig. 2.5(b)

shows a differential N-path filter’s frequency response (N = 8). The desired center frequency is

fclk. The N-path filter has harmonic responses at 3 fclk, 5 fclk, and 7 fclk because the signals around

those frequencies are down-converted by the clock harmonics and up-converted back to RF. The

OB attenuation is limited to a certain number due to finite switch resistance. The first-order RC fil-

ter at baseband limits the N-path filter roll-off. A high-order active N-path filter [26] improves OB

attenuation and filter order. However, the filter order before the active circuits is still low, making

the linearity at close-by frequency is still limited by the active circuits.

2.4 Thesis Overview

We present several techniques to improve the performance of SC-based RF filtering. Chapter 3

focuses on eliminating the N-path filter harmonic responses for better band selection. Chapters
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4–5 present passive DT SC filter to achieve linear, high-order RF filtering. These chapters address

such key challenges as linearity limitations, RF impedance matching, and noise performance.



Chapter 3

Blocker-Tolerant Receiver with

Harmonic-Rejecting N-Path Filtering

3.1 Introduction

The switched capacitor-based N-path filter (NPF) [22–26] offers a high Q factor, large tuning

range, and good linearity, and is a good candidate for on-chip blocker filtering. When using N-path

filtering at the RF input (Fig. 3.1(a)), the RF N-path bandpass filters [23,25,26] and the mixer-first

receivers [27,28] directly attenuate the OB blocker at the input resulting in an excellent blocker tol-

erance; however, for systems where there are strict emission limits, LO leakage can be a potential

problem. Also, large capacitors are required to achieve narrow-band filtering due to the relatively

small source impedance. Since the OB attenuation at the RF input node (Vin in Fig. 3.1(a)) is

limited to the ratio of Ron/(Ron +Rs), where Ron is the switch-on resistance, small Ron is also

18
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required. These filters further exhibit spurious responses [23] at the harmonics of the LO signal

which result in poor OB linearity. Preceding the NPF with an active LNA (Fig. 3.1(b)) [35,36] of-

fers reverse isolation and reduces the LO leakage. Also, the LNA output impedance is larger than

the 50 Ω source resistance, which reduces the capacitor sizes and relaxes the switch Ron require-

ment. However, those receivers still have harmonic responses at the LNA output which reduce the

blocker tolerance for blocking signals close to the LO harmonic frequencies. Various harmonic-

rejection mixing techniques [36, 59–62] have been proposed. Using harmonic recombination in

baseband [36] achieves a good harmonic rejection ratio (HRR), but the harmonic attenuation at

the LNA output is not improved. The current-driven passive mixer and two-stage harmonic rejec-

tion approach in [59] shows high HRR and good OB linearity. However, it offers only a moderate

blocker 1 dB compression point (B1dB) at low blocker offset frequencies. The harmonic-rejection

TIAs proposed in [62] reduce the harmonic down-conversion after the baseband TIA for mixer-first

receivers and current-driven mixers, though the harmonic down-conversion before the TIA cannot

be eliminated using this technique. In [63] a bandpass filter without 3rd harmonic response was

proposed and its operation and performance was evaluated in simulation. However, that approach

cannot suppress the harmonic response before the recombination.

We propose a harmonic-rejecting N-path filter (HR-NPF) which reduces the harmonic re-

sponses at the 3rd and 5th LO harmonics (Fig. 3.1(c)) [64]. The active LNA provides a lower

than -90 dBm LO leakage and high source impedance for the NPF. The harmonic responses are

strongly attenuated by the HR-NPF, which improves the LNA blocker tolerance at LO harmonic

frequencies. A receiver front-end prototype using the HR-NPF achieves a -2.4 dBm B1dB at only a
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Figure 3.1: (a) Conventional N-path filter. (b) Conventional N-path filter with LNA. (c) Proposed
harmonic rejecting N-path filter with LNA

20 MHz blocker frequency offset, and the B1dB remains high at LO harmonics. The HR-NPF also

offers additional harmonic rejection for the down-conversion to achieve the two-stage harmonic

rejection with >51 dB HRR at the 3rd and 5th LO harmonics without calibration.

The concept and analysis of the HR-NPF are developed in Section 3.2. The RF receiver with

an HR-NPF and the circuit implementation are described in Section 3.3. Section 3.4 provides the

measurement results, and conclusions are presented in Section 3.5.

3.2 Harmonic-rejecting N-path filter

An NPF is a continuous-time switched-capacitor bandpass filter driven by N-phase 1/N-duty-cycle

nonoverlapping clocks, which is well analyzed in [23–25]. Due to the time-varying nature of the
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Figure 3.2: Simulated harmonic response (top row), harmonic folding (middle row), and harmonic
down-conversion (bottom row) in 4-path filter (left column), 8-path filter (middle column) and
proposed harmonic-rejecting 8-path filter (right column) for a 0.2 GHz clock frequency.

NPF, there are several frequency translation issues in the NPF compared to the linear-time-invariant

(LTI) filter. Using a differential architecture helps to mitigate the issues due to even order harmonic.

In this section, we first discuss the harmonic folding, harmonic response, and harmonic down-

conversion in a differential NPF, then show the analysis of the HR-NPF.
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3.2.1 Harmonic response, harmonic folding, and harmonic down-conversion

in a differential N-path filter

Fig. 3.2 shows the simulated harmonic response, harmonic folding and harmonic down-conversion

of differential NPF with LNA (Fig. 3.1(b)) and proposed HR-NPF with LNA (Fig. 3.1(c)) for a

250 Ω LNA output resistor, a 10 Ω switch on-resistor, an 80 pF baseband capacitor, and a 0.2 GHz

clock frequency. These effects in an NPF are well analyzed in [24]. Considering the signal at LNA

output, the harmonic response is the bandpass filtering function around the clock harmonics (top

row in Fig. 3.2). The harmonic attenuation (HA) is the ratio of the gain at desired signal frequency

to the gain at clock harmonics. The HA of an NPF is

HAi =
sinc2 ( π

N

)
sinc2

( iπ
N

) , (i = odd), (3.1)

where i is the order of clock harmonic, N is the number of paths in the NPF, and sinc(x) = sin(x)/x.

Low HA degrades the blocker tolerance at the clock harmonics.

The folding of unwanted signals from clock harmonics to the desired signal band at the LNA

output is called harmonic folding (middle row in Fig. 3.2). The harmonic folding rejection ratio

(HFRR) is the gain ratio of desired RF signal to the signal folded from clock harmonics, which is

HFRRi =
sinc

( π
N

)
sinc

( iπ
N

) , (i = kN −1,k ∈ Z). (3.2)

Since the RF signal is down-converted to the baseband capacitor, the NPF can also be used
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as a down-converter. The down-converting of unwanted RF signals at clock harmonics is called

harmonic down-conversion, which reduces the SNR for the desired signal. Also, the blockers at

clock harmonics can be amplified, and saturate the baseband circuits. The harmonic-rejection ratio

(HRR) is the ratio of the conversion gain for the desired signal to that for the signals at clock

harmonics, which is

HRRi =
sinc

( π
N

)
sinc

( iπ
N

) , (i = odd). (3.3)

In the NPF, harmonic folding can be reduced by using more paths. Compared to a 4-path filter,

in an 8-path, the harmonic folding from the 3rd and 5th clock harmonics filter is reduced (Fig. 3.2);

however, the harmonic response is worse than that of a 4-path filter. The HA3 of an 8-path filter is

only around 4 dB which is much higher than the 19 dB HA3 in a 4-path filter, and can reduce the

blocker tolerance at that clock harmonic. Moreover, the HR3 of an 8-path filter is only 2 dB which

is worse than the 10 dB HR3 in a 4-path filter .

In our proposed harmonic-rejecting 8-path filter (right column in Fig. 3.1), the harmonic fold-

ing is improved by employing more paths, and the harmonic response and the harmonic down-

conversion are also improved. For a wideband receiver with a frequency range of 0.2-1 GHz, the

HR-8PF improves the blocker tolerance at clock harmonics across the whole frequency range,

since the 7th order harmonic for the lowest clock frequency 0.2 GHz is 1.4 GHz which is out of the

desired input frequency range.
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3.2.2 Analysis of the harmonic-rejecting N-path filter

Fig. 3.3 shows the simplified operation of the NPF and the proposed HR-NPF. In a conventional

8-path filter with an LNA, the RF signal is first down-converted to the baseband capacitors, then

up-converted back to the LNA output as shown in Fig. 3.3(a). The total frequency response con-

sists of transfer functions due to the fundamental of the clock H1(f), 3rd order harmonic of the

clock H3(f), and finite on-resistance HSW(f). In the proposed HR-8-path filter, the 3rd order clock

harmonic is rejected during down-conversion by combining the outputs of 3 LNAs with scaled

transconductance (Fig. 3.3(b)). Thus the filter transfer function due to the 3rd order clock harmonic

(H3(f)) is removed, and the harmonic attenuation is limited only by switch Ron.

To calculate the transfer function of the HR-NPF, we use the similar approach in [26]. Fig. 3.4(a)
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shows a differential harmonic-rejecting 8-path filter (HR-8PF). The switches driven by pi and pi+4

share the same baseband capacitor to eliminate the even-order harmonic responses [24]. To ana-

lyze the transfer function Vrf,k/Vin, the LNAs are modeled as transconductors (Gms) with finite

output impedance and gmk = gm · cos(kπ/4) (k = {−1,0,1}), while the switches are modeled as

ideal switches with finite on-resistance. We first find the baseband voltage on one capacitor Cbb,

then calculate the LNA output voltage using the superposition of Vin and Vbb,k.

The Gm with one switch can be modeled as a time-varying Gm with finite output resistance as

shown in Fig. 3.4(b) [26] since in each time slot only one switch is turned on for each Gm. Since

the switching function SWi is

SWi(t) =
+∞

∑
n=−∞

ane− j nπ
4 ie jnωclkt , (3.4)
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where an = sinc(nπ/8)/8 · exp(−jnπ/8), the equivalent Gm current with one switch (Fig.3.4(b))

in frequency domain can be written as

Ik,i(ω) =
RL

Rout
gmk

+∞

∑
n=−∞

ane− j nπ
4 iVin(ω−nωclk), (3.5)

where Rout = RL +Ron. The RF current is down-converted to the baseband by the nth clock har-

monic. The load resistor is 8 ·Rout, since the duty cycle of the clock is 1/8. For each Cbb, the

current from 6 Gms are summed up and generate the baseband voltage Vbb,i shown in Fig. 3.4(c).

The load resistor is 8/6 ·Rout. The baseband voltage is:

Vbb,i(ω) = [I−1,i−1(ω)+ I0,i(ω)+ I1,i+1(ω)− I−1,i+3(ω)− I0,i+4(ω)− I1,k+5(ω)] ·Zbb(ω), (3.6)

where Zbb is the equivalent baseband impedance, which is Rbb/(1+ jωRbbCbb) (Rbb = 4Rout/3).

The down-conversion from even order, 3rd, and 5th order clock harmonic frequencies are rejected

since the Gms are scaled to the ratio of 0:1:
√

2:1:0:-1:-
√

2:-1 in the different time intervals as in a

harmonic rejection mixer. Since gmk = gm · cos(kπ/4), the baseband voltage can be derived as:

Vbb,i(ω) =
+∞

∑
n=−∞

4ane− j nπ
4 i RL

Rout
gmVin(ω−nωclk)Zbb(ω), (n = 8l ±1, l ∈ Z). (3.7)

The output voltages of three LNAs can be considered as a superposition of the input Gm and the
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up-converted Vbb,i (Fig. 3.4(d)). The up-converted part V′
rf,k is

V ′
r f ,k(ω) =

+∞

∑
m=−∞

+∞

∑
n=−∞

32aman
RL

Rout
gmVin(ω− (m+n)ωclk)Zbb(ω−mωclk)e j nπ

4 k,

(m+n = 8q, m = odd, n = 8l ±1, l,q ∈ Z).

(3.8)

The desired signal frequency is ωclk +ωbb, so only the signals from (1−8q)ωclk +ωbb will be

folded into desired signal band. Since the 3rd and 5th clock harmonics are rejected during down-

conversion, the HR-8PF doesn’t have those harmonic responses. Ignoring the harmonic folding,

the transfer functions for the kth LNA can be written as:

Vr f ,k(ω)
Vin(ω)

=cos
(

kπ
4

)
gmRon||RL +

(
RL

Rout

)2 +∞

∑
m=−∞

32|am|2gmZbb(ω−mωclk)e− j mπ
4 k,

(m = 8l ±1, l ∈ Z).

(3.9)

The transfer function only has bandpass filtering around (8l±1)ωclk; the 3rd and 5th clock har-

monic responses are rejected. Assuming the LNA output resistance is much larger than the switch

on-resistance (RL ≫ Ron), the bandwidth of the bandpass transfer function is 3/(2πRLCbb), the

in-band (IB) gain is 128/3 · |a1|2gmRL and the OB gain is sin(kπ/4)gmRon. Although the Gms in

the three LNA branches are different, The IB gain of all the three branches are the same since the

gain is determined by the up-converted voltage V′
rf,k and for each branch the V′

rf,k has the same

amplitude but a different phase shift. Compared with an NPF directly connected to the RF input,

to achieve the same baseband bandwidth with the LNA, a smaller capacitor can be used result-
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Figure 3.5: The calculated (using (3.9)) and simulated transfer function of the HR-8PF with an
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ing in a smaller chip area, since the LNA RL is much larger than the 50 Ω RF source impedance.

Additionally, larger OB attenuation can be achieved due to a larger RL/Ron ratio.

The HR-NPF can be modeled as an RLC tank in series with Ron as conventional NPF [23]. The

equivalent RLC values are: Rm = 32|a1|2Rbb,Cm = Cbb/64|a1|2,Lm = 1/(Cmω2
clk). Fig. 3.5(a) shows

the calculated and behavioral-level simulated transfer function of the three LNA outputs (Fig. 3.3(a))

as well as the RLC model for the middle LNA branch. The switches are driven by a 200MHz 8-

phase non-overlapping clock, and gm=30 mS, RL=250 Ω, Ron=1m Ω, Cbb=80 pF. The simulated

transfer function matches the calculation using (3.9) very well. The frequency response of the

HR-8PF is very close to an RLC filter and the center frequency is tunable. The difference of the

different LNA outputs is caused by the phase shift in the up-converted voltage V′
rf,k.

To compare the HR-8PF (Fig. 3.1(c)) with a conventional 8PF (Fig. 3.1(b)), we assume that

they have the same total LNA transconductance gmLNA, that the LNA/sub-LNA load resistors of
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8PF and HR-8PF are that RL,LNA and 3RL,LNA respectively, that the baseband capacitors are Cbb,

that the OB attenuation of the HR-8PF middle branch and 8PF are the same, and RL,LNA ≫ Ron.

The sub-LNA in the middle branch of the HR-8PF has a gm of gmLNA/(1+
√

2), thus the gain and

Ron of HR-8PF are 2/(1+
√

2) and 1/(1+
√

2) times that of the 8PF respectively. The bandwidth

of the HR-8PF is the same as 8PF. The LNA power of the two filters are the same since the have

the same gm. Assuming the clock generator power is proportional to the total switch capacitance

and the capacitance of a switch is proportional to 1/Ron, the clock generator power of the HR-NPF

is 3/(1+
√

2) times that of the 8PF.

3.2.3 Second-order effects

Finite switch on-resistance

The finite switch on-resistance limits the OB attenuation of the HR-NPF. The HR-8PF OB atten-

uation can be derived as 20log(128|a1|2RL/[3Ronsin(kπ/4)]) for the kth LNA branch from (3.9).

Fig. 3.5(b) shows the calculated and simulated transfer function of the HR-8PF with Ron=10 Ω.

The transfer curve of the LNA branch #-1 skews to the right while that of the LNA branch #1

skews to the left at low frequency offset due to the phase shift in the up-converted voltage V′
rf. At

larger frequency offset, the OB attenuation of those two branches is limited by the switch Ron as

expected.
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Parasitic capacitors

In a real circuit, the LNA and switches have parasitic capacitors. The switch capacitor at the base-

band side can be considered a part of Cbb. The parasitic capacitor at the output of the LNA will

shift the filter center frequency and increase the in-band loss as discussed in [26].

Mismatch between the branches

In an ideal HR-8PF, no RF currents around the 3rd and 5th clock harmonics are down-converted

to the baseband capacitors, and the harmonic responses are fully eliminated. However, in a real

circuit, the cancellation of the harmonic components of the effective clock is limited by the gain

and phase errors between the three branches. The finite Ron also limits the harmonic attenuation.

Defining HA′
HR as the harmonic attenuation (1σ) of the HR-8PF due to harmonic mixing and using

the derivation in [59], HA3′HR and HA5′HR of a HR-8PF can be written as:

HA3′HR = 3
sin2 (π

8

)
sin2

(3π
8

) [(σA

12

)2
+
(σϕ

4

)2
]−1/2

HA5′HR = 5
sin2 (π

8

)
sin2

(5π
8

) [(σA

20

)2
+
(σϕ

4

)2
]−1/2

(3.10)

where σA and σϕ are the standard deviations of gain and phase errors. The HA3′HR is 30 dB for

a σA = 10% and σϕ = 3◦, which is better than the HA3 caused by a 10 Ω Ron and a 250 Ω RL

(around 25 dB). Thus, the OB attenuation at 3rd and 5th order clock harmonics is mainly limited by

the finite switch Ron and can be as good as for other OB frequencies.
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Clock leakage

Generally, for an RF receiver, the asymmetric baseband circuit DC offset and charge coupling

mainly generate the clock leakage [65]. Considering the circuit in Fig. 3.1(b) as a differential RF

receiver with an 8-phase mixer, for the receivers using baseband trans-impedance amplifier (TIA),

the TIA input DC offset can be up-converted to 8fclk and its harmonics by the switches. However,

if the DC offsets of each Vbb are not symmetric or the clock signal has mismatch, the clock leakage

will appear at fclk. The clock charge injection is caused by the parasitic capacitor between the clock

trace and the RF trace. It generates clock coupling due to the asymmetric parasitic capacitor or the

clock signal mismatch.

In this work, the baseband capacitors are connected to the gate of Gm cells, and the Gm is

biased by the LNA outputs. Thus, the DC offset of the Gm cell input is much smaller than TIA.

To reduce the clock charge injection, the clock traces should not overlap with the RF traces in the

layout, thereby reducing the parasitic capacitance.

The reverse isolation of the LNA also helps to reduce the clock leakage. For the receivers using

feedback LNA, the clock leakage is limited to around -80 dBm [66], since the feedback path limits

the LNA reverse isolation. In this work, noise canceling LNA is used, and a cascode device helps

to improve the reverse isolation.
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3.3 RF receiver with harmonic rejecting N-path filter

3.3.1 RF front-end architecture

The architecture of the RF front-end prototype IC (Fig. 3.6) consists of a broadband LNA with

HR-NPF, baseband Gms, and an LO generator. All the switches in the HR-NPF are driven by

8-phase nonoverlapping LO signals as the clock. The HR-NPF provides bandpass filtering with re-

duced harmonic responses at LNA outputs. Also, the RF signal is down-converted to the baseband

capacitors in the HR-NPF with harmonic rejection. Since the down-converted voltage Vbb,i has a

phase shift exp(−jnπi/4) for the nth order LO down-conversion, the baseband Gms combine the

baseband voltages with the gm factor of sin(iπ/4) to realize a two-stage harmonic rejection archi-

tecture [59] and form in-phase and quadrature currents that drive off-chip TIAs. The conversion



33

gain of the receiver is

CG =
VIF

Vin
=

(
Vbb,i−1/

√
2+Vbb,i +Vbb,i+1/

√
2
)

gmbbRT IA

Vin

=
4
3

sinc
(π

8

)
gmRLgmbbRT IA,

(3.11)

where gm is the transconductance of the LNA and gmbb is the transconductance of baseband Gm

both with a gm factor of 1, RL is the LNA load resistance, and RTIA is the feedback resistance in

the TIA. The ideal 1 : sin(π/4) gm ratio is approximated as 17:12 in the LNA and baseband Gms.

Generally the HRR of a receiver is limited by the gain error of the Gm and the LO phase error.

In the two-stage harmonic rejection approach the overall relative gain error is the product of the

relative errors for the LNA and baseband Gms [59]. The gain error is negligible and the HRR is

limited by the LO phase error, so that a high HRR can be achieved. Compared with HRR calibration

techniques [36], two-stage harmonic rejection can achieve high HR3 and HR5 simultaneously. The

HRR further helps to reduce the mixer noise figure thanks to the reduction of noise folding.

3.3.2 Circuit implementation

Fig. 3.7(a) shows the schematic of the fully differential LNA which is split into 3 sections with

relative sizes of 12:17:12. All sections are joined together at the inputs. M1 −M4 is a current-reuse

common-gate (CG) stage and M5 −M8 is a current-reuse common-source (CS) stage. The total

gm of the CG stage is 20 mS to achieve the 50 Ω impedance matching at each input. Current re-use

improves the current efficiency and the gm ratio of the CS and CG branches is 4:1 to achieve a

low noise figure. The CG stages are biased with off-chip inductors to avoid the noise contribution
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of an active current-source bias. The load resistor ratio is R1 : R2 = 3 : 1 and R1 +R2 is around

472 Ω. The output common mode is maintained at VDD/2 with an external regulator. The supply

can vary from 1.8 V to 2.5 V and the cascode transistors guarantee a voltage drop smaller than 1V

across each device at 2.5 V so that thin-oxide transistors can be used. The baseband capacitors Cbb

(Fig. 3.6) have an effective 60 pF singled-ended capacitance and are realized with differential MIM

capacitors and single-ended MOS capacitors.

The differential baseband Gm (Fig. 3.7(b)) also uses current-reuse and can operate from 1.8 V

to 2.5 V. M2 and M3 are the input transistors with resistive source degeneration to improve linearity.

M1 is a PMOS current source, while a common-mode feedback (CMFB) circuit drives the NMOS

current source transistor M4 to maintain the output common mode voltage at VDD/2. To ensure

the common mode voltage tracks VDD/2 during power up, a soft-start LDO is used, and the LDO

output ramp speed is lower than the speed of the CMFB circuit.
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The LNA, switches, and Gm cells are DC coupled 1 (Fig. 3.6) to achieve higher OB linearity

at low RF frequencies as in [36]. The DC coupling sets the source/drain voltage of the switch

transistors to the LNA and Gm common mode, i.e. VDD/2, which can be as high as 1.25 V. The

NMOS switch transistors are placed in a deep N-well and their body and source are connected

together to keep source, drain, and body at the same DC voltage. The 1.2 Vpp LO signal is AC

coupled to the gates of the switches, and the gate bias voltage is VDD/2. The voltage drop across

all transistor terminal pairs is then not larger than the supply voltage (1.2 V) of the LO signal, and

thin-oxide switch transistors can be used. The on-resistance of each switch is around 14 Ω.

3.3.3 Improvement of out-of-band linearity

The HR-NPF improves the OB linearity of the receiver since it has low OB gain before the base-

band circuit and it reduces the voltage swing at the LNA output to improve the LNA linearity. The

cascade IIP3 for a receiver is 1/A2
IIP3,tot = 1/A2

IIP3,LNA +G2
LNA/A2

IIP3,BB [67]. For the IB linearity,

the baseband circuit is the bottleneck due to the large LNA gain. With the HR-NPF, the OB gain at

the baseband capacitor is already reduced (Fig. 3.6), and the harmonic down-conversion from 3rd

and 5th order LO harmonics is also rejected, thus the baseband circuit will not limit the OB linear-

ity, so that the LNA linearity becomes the bottleneck. The low OB impedance of the HR-NPF also

helps to improve the LNA output linearity. Fig. 3.8 shows the transistor-level simulated IIP3 and

P1dB versus load impedance for the LNA in Fig. 3.7(a). The LNA is driven by a port with a 1 :
√

2

balun, and the linearity is measured at the differential outputs of the LNA branch with a gm factor

1However when using DC coupling, the LNA IM2 products and flicker noise may leak to into baseband circuits.
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of 17. The small signal linearity (IIP3) and the large signal linearity (P1dB) are both improved with

lower LNA load impedance as shown in Fig. 3.8(b). The P1dB improves more than the IIP3 with

lower impedance since the LNA output will be clipped with a large input signal and high voltage.

3.3.4 Noise analysis

Noise-cancelling LNAs (NC-LNA) [19, 20] are widely used to achieve a low noise by cancelling

the noise from their common-gate (CG) transistor. However, if we split the NC-LNA into several

branches to achieve the harmonic rejection, the CG noise cannot be fully canceled. In this section

we analyze the NC-LNA (Fig. 3.7(a)) in the harmonic rejection receiver (Fig. 3.6). The simplified

circuit of the kth branch of the LNA is shown as Fig. 3.9(a). gmCG,k and gmCS,k are the transcon-

ductances of the CG and common-source (CS) branchs, and

gmCG,k =
gmCG · cos(kπ/4)

∑1
i=−1 cos(iπ/4)

,gmCS,k = βgmCG,k. (3.12)
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rejection mixer.

The output currents of these two branches are gmCG,kVin and αgmCG,kVin, where α = βR2/(R1 +R2).

Thus, the conversion gain can be written as

CG =
2
3
· sinc(

π
8
)(1+α)ηgm ·gmCGRLgmbbRT IA, (3.13)

where ηgm indicates the Gm efficiency, and ηgm = 2/(1+
√

2), since all the gmks are combined as

phasors after down-conversion, and RL = R1 +R2.

The double-sideband (DSB) noise factor (F) due to Rs is FRs = 1/sinc2(π/8), since the noise

from (8l±1)th LO harmonics are folded into desired signal band and ∑∞
i=−∞ sinc2(iπ/8) = 2

(i = 8l±1). The CS transistor mean-square (MS) noise currents from different LNA branches are

combined as scalars since those noise sources are independent, and the output noise due to the LNA

only has the noise folding from the (8l±1)th LO harmonics thanks to the baseband harmonic re-

combination. Since V2
n,CS = 4kTγgmCS(α/β)2(2/3 ·RLgmbbRTIA)

2 ·2, the additional DSB noise
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factor due to the CS stage is

FCS −1 =
1
β

(
2α

(1+α)ηgm

)2

γ
1

sinc2(π
8 )
. (3.14)

The CS stage noise can be easily improved by increasing the gm ratio of CS and CG transistors β.

Using a similar analysis, the additional DSB noise factor due to the LNA load resistor is

found to be FRL −1 = [2/(1+α)/ηgm]
23RL/Rs/sinc2(π/8). Assuming a given LNA gain, A =

(1+α)gmCGRL, the noise factor can be written as

FRL −1 =
1
A
· 12
(1+α)η2

gm

1
sinc2

(π
8

) . (3.15)

The load resistor noise can be improved by increasing the LNA gain.

To analyze the CG noise contribution, we split the noise source into two current sources (In,d,

In,s) as shown in Fig. 3.9(b), then calculate the output noise voltage from these two sources. In,d

is only transferred to the output by the mixer in one LNA branch while In,s is transferred to the

output through all the branches. Thus, the output voltages GdIn,d and GdIn,s are not out-of-phase

in the upper and lower LNA branches shown in Fig. 3.9(b), and the CG transistor noise cannot be

fully canceled by tuning the gain of CS stage. The DSB noise factor due to CG transistors can be

written as

FCG −1 =

(
2

(1+α)ηgm

)2 1

∑
i=−1

ξi

∣∣∣∣ηgm
1+α

2
− e− j iπ

4

∣∣∣∣2 γ
1

sinc2(π
8 )
, (3.16)

where ξi = cos(iπ/4)/
[
∑1

i=−1 cos(iπ/4)
]

is the ratio of the gm in the ith CG branch to the total

gm in the CG stage. Since the ηgm is also a constant, the NF due to CG stage (NFCG) is only a
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function of α which is the output current ratio of CS and CG stages. The NFCGversus α is shown in

Fig. 3.10. The optimal NFCG is not 0 which indicates that the noise from CG stage cannot be fully

canceled. However, compared with the NFCG without noise cancellation (α = 0), the NFCG with

noise cancellation (α = 1.9) is improved by 4.6dB. To fully cancel the CG noise, we can remove

M1 and M3 in Fig. 3.9(b) and only use M2 to achieve the impedance matching; then re-scale the

CS stages to achieve the harmonic rejection.

Considering ηgm = 0.828, the total DSB noise factor of the receiver due to Rs and NC-LNA

can be written as:

F =

1+
1
β
· 5.8α2γ
(1+α)2 +

5.8∑1
i=−1 ξi

∣∣∣0.41(1+α)− e− j iπ
4

∣∣∣2 γ

(1+α)2 +
1
A
· 17.5
(1+α)

 1
sinc2

(π
8

) . (3.17)

The NF lower limit is 1.4 dB, when β = ∞, A = ∞, and α = 1.9. For a given LNA gain, the NF is

a function of α and β. The calculated and behavioral-level simulated front-end noise figure (NF)

versus α with different β for a noisy LNA is shown in Fig. 3.10 with A = 19 and γ = 1. The NF

can be improved by increasing the ratio of the CS and CG stage (β). For the β = 4 condition, the

optimal α is 1.4, and the minimum NF is 3.7 dB. In this work, α = 1 is used resulting in a 3.8 dB

NF which is close to the optimal value and 3.2 dB better than the NF without noise cancellation

which is 7 dB. The transistor-level simulated noise figure of the receiver including the baseband

Gm is 4.8 dB for a 0.4 GHz LO. The noise contribution breakdown for the simulation is shown in

Table. 3.1.
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Figure 3.10: Calculated and behavioral-level simulated front-end noise figure with noisy LNA
versus factor α.

Table 3.1: Breakdown of the transistor-level simulated noise contribution
Rs CS stage CG stage RL Baseband Gm Others

Noise Contribution 34.3% 11.1% 15.8% 20.6% 15.6% 2.6%

3.4 Experimental Results and Comparison

The chip was fabricated in a 65nm CMOS process and the active area is 0.65x0.45 mm2 (Fig. 3.11).

Typical measurements are done with a 2.5V analog/RF supply to achieve maximal linearity and

a 1.2 V LO supply. The performance for different analog/RF VDDs between 1.8 V and 2.5 V has

also been measured. The measured S11 of each RF input is below -10 dB in the frequency range

of 150 MHz-1.7 GHz. The remaining measurements have been done with an off-chip 180◦ hybrid

driving the differential RF inputs and the hybrid loss was calibrated out. The LNA output can be

measured through the RF test output shown in Fig. 3.6, the loss due to the resistor between LNA

output and test output has been calibrated out in the measurement. The measured LNA transfer

function (Fig. 3.12) shows the effect of the HR-NPF; the different traces are for LOs from 0.2 GHz
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Figure 3.11: Chip photo

Figure 3.12: LNA transfer function measured at RFtest for LO frequencies swept from 0.2 to
1GHz with a 0.1GHz step
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Figure 3.13: Harmonic attenuation performance compared with other N-path filters.

to 1 GHz, spaced at 0.1 GHz 2; the trace for an LO of 0.2 GHz shows an OB attenuation of around

20 dB and illustrates that there are no harmonic responses at the 3rd and 5th LO harmonics which

are 0.6 GHz and 1 GHz respectively. The LNA, baseband Gm, and LO generator consume 12 mA,

12 mA, and between 2 and 8 mA respectively.

Fig. 3.13 shows harmonic attenuation performance compared with various NPFs [23, 25, 68].

The attenuation degradation at the LO harmonics shows the difference between the attenuation

at the 3rd order LO harmonic frequency and other OB frequencies. In contrast to earlier work,

the presented HR-NPF achieves high harmonic attenuation with low LO leakage and has zero

degradation which means the OB rejection is flat around the 3rd order LO harmonic.

The B1dB versus blocker frequency was measured with an LO frequency of 0.2 GHz and an

in-band signal at 0.201 GHz as shown in Fig. 3.14(a), since the worst-case scenario for harmonic

responses to blockers occurs for the lowest RF input frequency. For a blocker at a frequency offset

of only 20 MHz, the B1dB is -2.4 dBm and the B1dB remains high at the 3rd and 5th LO harmonics.

The B1dB also remains high beyond the 1 GHz RF bandwidth of the receiver. Only at the OB LO

2The LNA RF bandwidth is limited by the large LNA output impedance.



43

2 4 6 8 10 12 14 16 18 20
-12

-9

-6

-3

0

3

B
1d

B
 (

d
B

m
)

FrequencyOffset / BW

This work

[Borremans '11]

[Ru '09]

LNA-passive mixer
Lower LO leakage
Harmonic rejection

LNA-HR-NPF
Lower LO leakage
Harmonic rejection

LNA-NPF,Lower LO leakage
No Harmonic rejection

[Murphy '12] Mixer first, higher LO leakage
Harmonic rejection

0.2 0.4 0.6 0.8 1 1.21.41.61.82
-20

-16

-12

-8

-4

0

7th and 9th LO harmonics

B
1d

B
 (

d
B

m
)

Blocker Frequency (GHz)

20MHz offset

high B1dB at 3rd and 5th
LO harmonics

(a) (b)
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blocker tolerant RXs.

Figure 3.15: Measured out-of-band IIP3 for the OB signal located at 20MHz offset and 3rd order
LO harmonic.
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Figure 3.16: (a) Measured and simulated conversion gain and noise figure, (b) measured harmonic
rejection ratio versus LO frequencies.

harmonics at 1.4 GHz (7th) and 1.8 GHz (9th) is the B1dB reduced but the interference from those

harmonic frequencies can be filtered with an off-chip RF low-pass filter with fixed bandwidth.

Fig. 3.14(b) shows the B1dB for low frequency offsets compared with other blocker tolerant re-

ceivers [29,35,59]. Frequency offset/IFBW is used as the x-axis to normalize the comparison since

the receiver bandwidths are all different. For [35] the BW after LNA and B1dB at low gain have

been plotted for best performance. Our work achieves a higher B1dB at low frequency offsets

thanks to the HR-NPF and high VDD. The OB-IIP3 (Fig. 3.15) is 9 dBm for an LO of 0.2 GHz. The

OB-IIP3 at low frequency offset (two tones: 0.221 GHz and 0.241 GHz) and at LO harmonics (tow

tones: 0.401 GHz and 0.601 GHz) are nearly the same.

The gain, noise figure, and HR3 and HR5 versus LO frequency are shown in Fig. 3.16. The gain

is 36 dB at 0.2 GHz and reduces to 32 dB at 1 GHz. The front-end noise figure is 5.5 dB at 0.2 GHz

and 6 dB at 1 GHz. The measured HR3 and HR5 are both better than 51 dB at any LO frequency.

The harmonic rejection of 10 samples was measured at 0.2GHz (Fig. 3.17); the minimum HR3

is 51 dB and minimum HR5 is 53 dB. Those HRRs are achieved without calibration. Fig. 3.17
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Figure 3.17: Measured harmonic rejection ratio with a 0.2 GHz LO and LO leakage with 1 GHz
LO for 10 samples

also shows the LO leakage of 10 samples with 1 GHz LO, and the LO leakages are all lower than

-90 dBm.

The gain, noise figure and HRR versus VDD with a 0.2GHz LO are shown in Fig. 3.18(a).

Those performances change only a little when VDD is changed, since both the LNA and baseband

Gm are current-biased. The linearity versus VDD is shown in Fig. 3.18(b). With higher VDD the OB

linearity is improved, thanks to larger headroom at each amplifier output. The B1dB@20MHz is

improved more, since at that frequency the blocker attenuation is limited by the filter order, though

the clipping the at amplifier output still limits the large signal linearity when VDD is low.

The comparison with the state of the art is shown in Table. 3.2. This work has lower LO leakage

as compared with other works. The B1dB is -2.4 dBm at 20 MHz offset, and remains high at the

LO harmonics. The receiver in [62] also achieves high B1dB at the LO harmonics but it doesn’t

have harmonic rejection at the RF input which makes the B1dB at the LO harmonics lower than at

other OB frequencies.
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Table 3.2: Comparison with the state of the art
N-path filter Blocker tolerant RX

This work Darvishi
JSSC ‘12

Ghaffari
JSSC ‘13

Darvishi
JSSC ‘13

Murphy
JSSC ‘12

Borremans
JSSC ‘11

Ru
JSSC ‘09

Limpd
JSSC ’14

Murphy
JSSC ‘15

Technology 65nm 65nm 65nm 65nm 40nm 40nm 65nm 28nm 28nm

RF Input Differential Single-ended Differential Differential Single-ended Differential Differential Differential Differential

Offchip Inductor 4 0 0 0 0 2 2 2 0

Frequency (GHz) 0.2-1 0.4-1.2 0.1-1.2 0.1-1.2 0.08-2.7 0.4-6 0.4-0.9 0.4-6 0.1-3.3

LO leakage (dBm) <-90 <-60 <-60 <-64 NR NR NR NR NR

B1dB(dBm) -2.4@20MHz
-2.8@3flo

NR NR 7@50MHz -6@25MHz -
5.5@20MHza

-
10@100MHz

-
12@80MHz

0.5@8MHz
-6.5@3flo

OB-IIP3 (dBm) 9 29 NR 26 13.5 10 18 8 11.5

Gain (dB) 36 12 -1.4 25 70 70 34 70 NR

NF (dB)e 5.4-6 10 1.6-2.5 2.7-3.1 1.4-2.4 3-8 3.5-4.4 1.8-3.1 1.7

BW (MHz) 2 21 NA 8 2 0.4-30 12 0.5-50 0.2-3

HA3 of NPF (dB) 20 20 14b NR NA NA NA NA NA

HR3/5 (dB) >51/>52 NA NA NA 42/45 NR >60/>64 70/75c 60/60

VDD (V) 1.2/2.5 1.2/2.5 NR 1.2 1.3 1.1/2.5 1.2 0.9 1

Power (mA) 26-32d 15.6 3.5-30mW 15-48 27-60 30-55mW 41-50 44.4 36.8-62.4

Active area (mm2) 0.29 0.127 0.14 0.27 1.2 2 1 0.6 5.2

NR: not reported, NA: not applicable
a. RF filtering BW 15MHz, 6dB lower than max gain. b. For notch filter attenuation difference between fundamental and 3rd order harmonics is used as HA. c. with calibration. 
d. Analog 24mA, Digital (clock) 2-8mA. e. 1-dB typical input balun loss should be included for RXs with differential inputs.
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In the conventional receiver with NPF, it is hard to achieve a high OB linearity at LO harmonics

due to the NPF harmonic response [23] [25] [26]. The harmonic rejection at baseband is achieved

in [36] [69] [62], but those receivers have a harmonic response before the down-conversion, thus

the OB linearity at LO harmonics is still not as good as at other OB frequencies. In this work,

the HR-NPF rejects the harmonic down-conversion before the baseband Gm and reduces the LNA

load impedance at LO harmonic frequencies, such that high OB-IIP3 and B1dB at 3rd and 5th order

LO harmonics are achieved.

3.5 Conclusions

In this chapter an RF receiver with harmonic-rejecting N-path filtering is analyzed and imple-

mented. The proposed HR-NPF achieves large OB attenuation and high harmonic attenuation at

the LNA outputs, thus, the receiver achieves high B1dB at both low offset frequencies and the 3rd

and 5th LO harmonics to make sure the receiver can tolerate an OB blocker at any frequency in

the 0.2-1 GHz frequency range. This receiver also achieves <-90 dBm LO leakage and high HRR

without calibration.

The HR-NPF offers a wideband OB interferer tolerance. However, the OB linearity is limited

by active LNA. In the following chapters, high-order SC RF bandpass filters are presented to

achieve much higher interferer tolerance especially for close-by blockers.



Chapter 4

Switched-Capacitor RF Receiver with

Programmable High-Order Filtering

4.1 Introduction

As discussed in Chapter 1, wideband receivers (RX) are critical for the implementation of software-

defined radio (SDR) and cognitive radio (CR) systems. In those systems, the goal is to replace the

high-quality fixed off-chip radio-frequency (RF) filters with tunable RF filtering so that a blocker-

tolerant RF receiver can be realized (Fig. 4.1(a)). RF MEMS filters have been proposed to achieve

the off-chip high-quality tunable filters, but they suffer from limited tuning range, in-band loss

and large size [32]. Switched-capacitor (SC) N-path RF filters implemented in CMOS realize the

tunable high-quality filtering [22, 23, 26, 35–37, 64] to improve the out-of-band (OB) linearity. An

NPF at the low-noise amplifier (LNA) output [35, 36, 64] reduces the OB-blocker voltage swing,

48
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but the overall OB linearity remains limited by the nonlinear LNA. An NPF preceding the LNA

as shown in Fig. 4.1(b) [37] attenuates RF input blockers, but the stop-band rejection is limited

by the switch-on resistance (Ron; Fig. 4.2). In [26], active circuits are used to realize a high-order

N-path filter (NPF) with larger OB attenuation. However, before the first active amplifier, there is

still a conventional NPF with limited OB attenuation. In mixer-first receivers [27–31], the active

amplifiers are attached to capacitors (Fig. 4.1(c)) so that the stop-band rejection is not limited by

Ron. But the filtering before the nonlinear active circuits is only first order so that the OB linearity

for a close-by blocker is still not high enough (Fig. 4.2).

In our proposed SC RF receiver (SCRX) (Fig. 4.1(d)) [70], high-order filtering is achieved

by linear passive SC circuits to highly attenuate the OB blockers before they reach the nonlinear

active baseband amplifier (Fig. 4.2). Passive discrete-time (DT) SC circuits, which are easier to

scale with process and have low process-voltage-temperature (PVT) variations, have been used as

intermediate frequency (IF) filters in RF receivers [49–53]. In emerging CMOS processes, active

circuits are more difficult to design due to the low voltage headroom and low intrinsic gain [71],

while the passive SC circuits benefit from faster switches and higher clock speeds. Moreover,

passive SC circuits have good linearity. However, in a conventional DT receiver [49–52,69], those

circuits are used after the LNA, thus the nonlinear active LNA still limits the OB-blocker tolerance.

In our design, high-order linear SC filtering is achieved prior to the active amplifier to maximize

the benefit of the filtering by the linear SC circuits.

The proposed SCRX not only achieves filtering, but also realizes RF impedance matching

and harmonic-rejecting down conversion. A similar high-order SC filter is shown in [72]. How-
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… …

Figure 4.1: (a) Wideband receiver with an off-chip RF bandpass filter. (b) A wideband receiver
with an N-path filer at the RF input. (c) A mixer-first receiver. (d) Proposed switched-capacitor
receiver with filtering, impedance matching and down-conversion performed with switches and
capacitors only.
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Figure 4.2: Equivalent RF filtering before the nonlinear active circuits of an N-path filter, a mixer-
first receiver, and the proposed switched-capacitor receiver.

ever, it cannot achieve the impedance matching for the RF receiver, also the voltage-sampling

approach would increase the noise figure (NF) due to noise folding. In [31], a SC circuit is used for

impedance matching, but it can only provide first-order filtering as with other mixer-first designs.

The rest of this chapter is organized as follows. The concept and analysis of the SCRX are

described in Section 4.2. The front-end architecture and circuit implementation are presented in

Section 4.3. Section 4.4 provides the measurement results. The conclusions are presented in Sec-

tion 4.5.

4.2 Switched-Capacitor RF Front End Concept and Analysis

4.2.1 Basic Concept

Fig. 4.3(a) shows the architecture of a single-ended version of the SC receiver. It is implemented

with eight RF SC banks followed by baseband Gm cells and transimpedance amplifiers (TIAs). All

the switches are driven by an eight-phase, nonoverlapping clock signal p⟨i⟩ as shown in Fig. 4.3(b).
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Figure 4.3: (a) Simplified architecture of a single-ended SC receiver. (b) clock wave form. (c)
Operation of the SC receiver.
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The sampling frequency is fs, and the equivalent LO frequency of this zero-IF receiver is flo = fs/8.

At the RF input, capacitors Ch0⟨i⟩ with the s0⟨i⟩ switches in all eight banks realize an RF NPF to

attenuate the OB signals. After that, a SC circuit is used for impedance matching, which is realized

by capacitors Cs⟨i⟩ with switches s1⟨i⟩ and s6⟨i⟩. Also, here the RF signal is sampled on Cs⟨i⟩,

and the continuous-time (CT) signal is converted to DT domain. After sampling, history capacitors

Ch1⟨i⟩–Ch3⟨i⟩ and the switches attached to those capacitors (s2⟨i⟩–s4⟨i⟩) as well as Cs⟨i⟩ and s6⟨i⟩

realize a high-order DT infinite-impulse-response (IIR) filter [57], and switches s5⟨i⟩ propagate the

signal to the Gm input nodes. The Gm cells on the in-phase (I) and quadrature (Q) paths combine

the signal from all eight SC banks and achieve the harmonic rejecting down-conversion [36]. Also,

here the DT signal is converted back to the CT domain. A conventional RF receiver can be replaced

by the proposed SCRX since the TIA output voltages are CT I/Q-baseband signals.

The SCRX achieves different circuit functions in sequential time intervals as shown in Fig. 4.3(c).

For SC Bank #1, the RF signal is sampled on Cs in sampling phase p1, propagated to the Gm in-

put node in p5, and dumped to ground in p7. From p2 to p4, the signal is filtered with increasing

order. The blank time intervals relax the timing constraints, and the eight banks operate in a time-

interleaved fashion.

4.2.2 Core Switched-Capacitor RF Front End without Filtering

Fig. 4.4(a) shows the SCRX without filtering. The signal path can be modeled as in Fig. 4.4(b).

Since the s1⟨i⟩ switches in the eight banks are turned on one after another, the input signal is

consecutively sampled on Cs⟨i⟩. Those sampled voltages, Vsp[k] to Vsp[k+7] (k = 8 · l, l ∈ Z), can
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be considered as one time-interleaved signal Vsp[n] with sampling frequency fs. The sampler with

source resistor Rs can be mathematically modeled as an ideal sampler with a CT antialiasing filter

G(f) as discussed in a later subsection. The signal Vsp[n] is propagated to the Gm inputs after a

delay of 4/fs. The Gm cells are modeled as a DT mixer with a reconstruction circuit converting the

DT voltage to a CT current.

Two key features of the SCRX are the 50 Ω input impedance matching with higher in-band

gain than resistive matching and RF sampling with intrinsic antialiasing filtering.

RF Impedance Matching

The input impedance matching is achieved by charging and discharging Cs⟨i⟩ (Fig. 4.5(a)) as dis-

cussed in [70]. Since Vin = Zin/(Zin +Rs) ·Vs, the input impedance can be calculated from Vin

and Vs (Fig. 4.5(a)). The input impedance at a certain frequency f is defined as the input voltage
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at f divided by the input current at the same frequency. To analyze Vin, a linear periodically time

varying (LPTV) approach is required since the matching circuit is a CT SC system. In an LPTV

system, the frequency domain input voltage Vin(f) is a summation of filtered source voltage Vs(f)

with frequency shifts [67]:

Vin( f ) =
∞

∑
n=−∞

Hn( f )Vs( f −n fs). (4.1)

To calculate the input impedance Zin(f), we just need H0(f) in (4.1). The input impedance can be

calculated by Zin(f) = H0(f)/(1−H0(f)) ·Rs. Using a similar approach as in [73,74], H0 is derived

in the appendix:

H0( f ) =
1

1+ j f/ frc

[
1− fs/2π frc

1+ j f/ frc

(
1− e−2π( frc+ j f )/ fs

)]
, (4.2)

where frc = 1/(2πRsCs), and fs is the sampling frequency. The input admittance (Yin(f) = 1/Zin(f))

can now be expressed as

Yin( f ) =
j f/ frc − ( f/ frc)

2 + fs/2π frc

(
1− e−2π( frc+ j f )/ fs

)
1+ j f/ frc − fs/2π frc

(
1− e−2π( frc+ j f )/ fs

) · 1
Rs

. (4.3)

The admittance is a function of frc. To match the DC input admittance to 1/Rs, Yin(0) = 1/Rs.

Evaluating (4.3) at DC and equating it to 1/Rs, the equation for frc is

e−2π frc/ fs +
2π frc/ fs

2
−1 = 0. (4.4)
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Solving this transcendental equation, we obtain frc ≈ 0.25fs and Cs ≈ 0.63/fsRs, so the Cs needs

to be tuned with different LO frequencies. Using (4.4) and given that exp(−2πfrc/fs) is small, the

input admittance can now be simplified to

Yin( f ) =
(

1+2( f/ frc)
2

1+4( f/ frc)2 + j
4( f/ frc)

3

1+4( f/ frc)2

)
· 1

Rs
. (4.5)

At low frequencies (f ≪ frc), the real part is dominant and equal to 1/Rs. At high frequencies

(f ≫ frc), the imaginary part becomes larger, which can be modeled as a capacitor equal to Cs.

The input impedance of the SCRX can thus be modeled as a resistor Rm = Rs in parallel with a

capacitor Cm = Cs as shown in Fig. 4.5(b). Considering frc ≈ 0.25fs, Yin(f) can be normalized by

fs. Fig. 4.5(c) shows the S11 with ideal switches simulated with Spectre RF. The calculated S11,

using (4.3), and the RC model are also shown in Fig. 4.5(c) and match the simulation well. The

S11 in the desired signal band around flo = fs/8 is lower than −10 dB.

The S11 with finite switch Ron is shown in Fig. 4.5(d). Ron,1 is simply in series with Zin of the

SC circuit, and the calculated S11 with finite Ron,1 matches the simulation well. A non-zero Ron,6

however changes the shape of S11 since the Cs voltage is not fully reset in the resetting phase. The

IIR filter (discussed in a later section) attenuates the OB signal before resetting, which makes the

OB S11 close to the S11 with an ideal s6. The S11 in the signal band changes due to non-zero Ron,6.
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RF Sampling

The RF sampler consists of s1, s6 and Cs (4.6(a)). It can be modeled as a CT filter G(f) and an ideal

sampler as shown in Fig. 4.6(b). The G(f) is derived in the appendix as

G( f ) =
1

1+ j f/ frc
·
[
1− e−2π( frc+ j f )/ fs

]
. (4.6)

The first part of G(f) is a first-order low-pass filter with a constant of RsCs, while the second part is

a FIR filter with a delay of 1/fs. Considering frc ≈ 0.25fs, G(f) can be normalized by fs. Fig. 4.6(c)

shows the G(f) and H(f) (= Vin/Vs) transfer curves. Since the input impedance is matched to

Rs, the gain of H(f) at the LO frequency (fs/8) is −6 dB as in resistive matching, while G(f) is

−2.2 dB. This means the sampler provides a 3.8 dB passive gain (V′
s/Vin) because, when the switch
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s1 is turned on, the Cs voltage is charged from zero to Vsp, while Vin is the “average” voltage of

the whole charging period as shown in the Vin transient wave form for a DC (0 Hz) source voltage

Vs in Fig. 4.6(d).

The sampler operates between a voltage sampler and an integration sampler. In a voltage sam-

pler, the Cs voltage follows the source voltage when the switch is turned on, and the high-frequency

signals around the sampling frequency and its harmonics will be folded into the desired signal

band. In an integration sampler, when the switch is turned on, the Cs voltage is the integral of the

source current (Is = Vs/Rs). The integration sampler has intrinsic antialiasing filtering with nulls

at nfs (n ̸= 0) [75]. The key difference between the voltage and integration sampler is the FIR part

in (4.6). The RC constant is relatively small (RsCs ≪ 1/fs) in a voltage sampler, and the FIR part

in G(f) can be ignored. In an integration sampler, the RC constant is large (RsCs ≫ 1/fs). Then

the FIR filter generates deep nulls at the sampling frequency and its harmonics which reduces the

aliasing. In this work, the RC constant is close to the sampling period, which makes it between a

voltage and an integration sampler. Using frc ≈ 0.25fs, the bandwidth of the RC-filtering part in

G(f) is around 0.25fs. Also, the FIR filtering part in G(f) provides more attenuation around the

sampling frequency and its harmonics, although the attenuation is lower than in the integration

sampler. The G(f) transfer function is shown in Fig. 4.6(b). The G(f) provides more than a 10 dB

rejection to reduce the signal and noise folding from nfs ± fs/8.
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DT Down-conversion and Reconstruction

The Gm cells in Fig. 4.4(a) are modeled as a DT mixer with a reconstruction circuit. The DT

mixing can be expressed as Imix {I,Q}[n] = Vgm[n]· gm{I,Q}[mod(n,8)+1], where mod(·) is the

modulus function. By scaling gm[i] as a DT sine wave, we obtain the down-converted {I,Q} signal

at the mixer output. The gm factors gm[1] to gm[8] in the I path need to be sized as sin((i−1) ·4/π),

which are 0, 1,
√

2, 1, 0, −1, −
√

2, −1, 0, while the gm factors in the Q path are −cos((i−1) ·4/π)

as in a harmonic rejecting mixer (HRM) [36]. So, only the signal around fs/8 in the Nyquist

bandwidth fs/2 will be down-converted to baseband. Nonidealities like gain and phase mismatches

will reduce the harmonic rejection ratio (HRR) as in other HRM [36].

Besides performing down-conversion, the Gm cells also convert the signal from the DT to

the CT domain. The reconstruction is a zero-order hold with a hold time of 8Ts (Ts = 1/fs); the

output current can be expressed as Iout {I,Q}(t) = ∑∞
n=−∞ Imix {I,Q}[n] · rect((t−4Ts −nTs)/8Ts),

where rect(·) is the rectangular function.

Combining antialiasing filtering, sampling, DT mixing with harmonic rejection and reconstruc-

tion, the conversion gain of the receiver is

CG( fin) =
Vout( fin − fs/8)

Vs( fin)
= G( fin) ·

1
Ts

· 1
2

gm ·8Tssinc
(

π
fin − fs/8

fs/8

)
·R ≈ 4G( fin)gmR, (4.7)

where fin is the input RF frequency around LO frequency of fs/8, gm is the transconductance

of the Gm cell with a size of
√

2, and R is the feedback resistor in the TIA. The sinc function

approximates to 1 for fin close to fs/8.
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4.2.3 Programmable High-Order DT IIR Filter

The DT IIR filter consists of capacitors Cs, Ch1–Ch3 and switches s2–s4, s6 as shown in Fig. 4.7(a).

Instead of cascading first- or second-order filters as in [50, 51, 69], the high-order filter is imple-

mented by charge rotating [57]. In each cycle of 8/fs, after Cs is charged to the finite state of

sampling phase Vsp,0, it sequentially connects to Ch1, Ch2, Ch3, the gm input node, and ground.
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When Chi connects to Cs, the Cs voltage and Chi voltage after charge sharing are

Vsp,i[n] =Vh,i[n] = αVh,i[n−8]+ (1−α)Vsp,i−1[n−1], (4.8)

where α = Chi/(Chi +Cs), i={1,2,3}, Vh,i is the Chi voltage, Vsp,i is the Cs voltage after it connects

to Chi. Writing (4.8) in the z domain with z = exp(j2πf/fs), the Cs voltage can be expressed as

Vsp,i(z) =
1−α

1−αz−8 · z
−1 ·Vsp,i−1(z). (4.9)

This shows that each Chi provides a first-order IIR filtering. If Chi is not connected, the transfer

function (4.9) is just a delay (z−1). The filter order can thus be tuned by enabling or disabling

the clock signal for si connected to Chi. When the clock signal is disabled, its clock driver can be

turned off to save power providing a trade-off between filter order and power consumption.

Since Vgm[n] = Vsp,3[n−1], the transfer function of the whole IIR filter is

Vgm(z)
Vsp(z)

=

(
1−α

1−αz−8

)n

· z−4, (4.10)

where Vsp = Vsp0, and n is the number of Ch being connected, n={0,1,2,3}, which is also the IIR

filter order. Fig. 4.7(b) shows the calculated IIR filter transfer curves in the Nyquist bandwidth for

different filter orders with fs =4 GHz, Cs ≈ 0.63/fsRs, and Ch =50 pF. The DC and even-order LO

harmonic responses will be removed using differential circuits as in a differential NPF [23].

In a DT IIR filter, the bandwidth changes with sampling frequency, since it is proportional
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to fsCs/8Ch. In this work, Cs is tuned to 0.63/fsRs to achieve the impedance matching. So, the

bandwidth is proportional to 0.63/8(RsCh) and independent of fs. So the filter bandwidth doesn’t

change when changing LO frequencies (flo = fs/8) and can be tuned by Ch. In this work, Ch is

fixed.

4.2.4 Noise Analysis

In the SCRX, the added noise is mainly the thermal noise of the switches. Fig. 4.8(a) shows the

noise sources of the SCRX without filtering (Fig. 4.4(a)). Switch si is modeled as an ideal switch

in series with a parasitic resistor Ron,i and a noise voltage Vni. Ch,gm is the parasitic capacitor

of the Gm cell. Since there is no overlap between the clock signals driving s1⟨i⟩ in the eight SC

banks, all the white noise source Vn1⟨i⟩ can be merged into a single white noise source, Vn1,
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as shown in Fig. 4.8(b). The sampling switch, s1, noise is thus added to the source noise Vns as

shown in Fig. 4.9 since Ron is in series with Rs. The intrinsic antialiasing filter, G(f), reduces the

high-frequency noise folding.

The resetting-switch, s6, noise is first sampled on Cs. Together, Cs and s6 are a voltage sampler

(Ron,6Cs ≪ 1/fs) so that the high-frequency noise is folded into the signal band after sampling,

resulting in a nearly white noise [76]. The noise spectral density is the total mean-square (MS)

noise voltage, kT/Cs, divided by Nyquist bandwidth, fs/2. Then, this sampled noise voltage is

partially dumped by Rs when s1 is turned on for a duration of 1/fs and the noise voltage is reduced

by a factor of exp(−2πfrf/fs). After that, the noise voltage is added to the desired signal as shown

in Fig. 4.9. The noise spectral density at the Gm input node in the signal band due to Vn6 is

V 2
gm,n6 =

2kT
Cs fs

e−1/ fsCsRs ·∆ f . (4.11)

Since the noise analyses of the switch s5 and the switches in the IIR filter are related, we use the

same equivalent schematic in Fig. 4.8(c) to analyze their noise transfer functions; Vn,i is the noise

voltage source of switch si, i={2,3,4,5}; for the s5 noise analysis, Ch is Ch,gm and for the noise
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analysis of the sj+1 in the IIR filter, Ch is Chj, j={1,2,3}. When si is turned on, Vn,i is sampled on

Cs in series with Ch. Let Vn,sp be the sampled noise voltage between node A and B in Fig. 4.8(c)

with an MS value of kT/αCs, where α = Ch/(Ch +Cs). The DT voltages on Ch and Cs are

V1[n] =−(1−α)Vn,sp[n]+αV1[n−1], V2[n] = αVn,sp[n]+αV1[n−1], (4.12)

Solving (4.12), we find

H1(z) =
V1(z)

Vn,sp(z)
=− 1−α

1−αz−8 , H2(z) =
V2(z)

Vn,sp(z)
= α

1− z−8

1−αz−8 . (4.13)

H1 is the s5 noise transfer function and is an IIR bandpass filter with a 0 dB in-band gain. H2 is the

noise transfer function for the switches in the IIR filter and is a notch filter centered at the desired

signal band. The calculated H1 and H2, with fs = 4GHz and Ch = 50pF, are shown in Fig. 4.8(d).

The s5 noise is added to the desired signal at the Gm input node, as shown in Fig. 4.9 with an

in-band-noise spectral density of

V 2
gm,n5 =

2kT
αgmCs fs

·∆ f , (4.14)

calculated using (4.13) where αgm = Ch,gm/(Ch,gm +Cs).

The switch noise from the IIR filter is added to the desired signal when being sampled on Cs

with the transfer function H2. The in-band filter noise is first reduced by the IIR notch filtering H2,
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Figure 4.10: (a) Schematic of the CMOS switch, the sizes of the NMOS and PMOS transistors are
the same (W/L = 150 µm/40 nm). (b) Simulated Ron of NMOS, PMOS and CMOS switches versus
signal voltage. (c) Simulated Roff of NMOS, PMOS and CMOS switches versus signal voltage.

then propagated to the output as shown in Fig. 4.9. It can thus be ignored, and the NF will remain

almost the same when increasing filter order.

Including the Gm cell noise I2
n,gm = 4kTγ(2+2

√
2)gm, the receiver’s total double-sideband

(DSB) noise factor at the target signal frequency (flo = fs/8) is

F = 1+
Ron,1

Rs
+

1
2Rs|G( fs/8)|2

[
e−1/ fsRsCs

fsCs
+

1
αgm fsCs

+
γ(1+

√
2)

8gm

]
. (4.15)

Using Cs ≈ 0.63/fsRs and G(fs/8) from (4.6), (4.15) can be simplified as

F = 1+
Ron,1

Rs
+0.27+1.32/αgm +

0.25γ
gmRs

. (4.16)

Since Ron,1 is relatively small and αgm < 1, the receiver NF is dominated by fourth term i.e. the

noise from s5. The NF lower limit is 4.13 dB when Ron,1 = 0, αgm = 1, and gm =+∞.
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of the differential SCRX with a 100 MHz LO frequency and 30 MHz blocker frequency offset;
real MOS transistors are used in the simulation and the input bias voltage is the midpoint of the
rail-to-rail voltage.
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4.2.5 Out-of-Band Blocker Linearity Analysis

The compression of the desired-signal gain due to the in-band blocker is mainly due to the nonlin-

ear Gm cells (Fig. 4.3(a)). For an OB blocker, the Gm cells do not limit the blocker compression

thanks to the SCRX’s high-order filtering. The OB-blocker compression is thus limited by the

sampler (Fig. 4.3(a)), which can tolerate more blocking than the Gm cells. In a SCRX without the

NPF, the reciever’s blocker compression approximates the compression of the sampler, which is

limited by the nonlinearity of the switches. In this work, to improve blocker compression, CMOS

switches (Fig. 4.10(a)) are used instead of the NMOS switches used in other blocker-tolerant re-

ceivers [26, 28, 29]. Fig. 4.10 shows the switch on and off resistance versus signal voltage. NMOS

and PMOS transistors in the switch have the same size of W/L = 150 µm/40 nm. VSW = VDD and

VSWb = VSS when the switch is turned on; VSW = VSS and VSWb = VDD when the switch is turned

off. In the simulation shown in Fig. 4.10, VDD = 1.2 V and VSS = 0 V.

When the input signal is sampled on Cs (Fig. 4.6(a)), s1 is turned on and s6 is turned off. If s1

is implemented by only NMOS, the Ron will increase with a large blocker signal (Fig. 4.10(b)),

resulting in compression of the desired-signal gain. The Ron of the CMOS switch used in this work

will not increase due to a large blocker. Thus, the Ron nonlinearity of s1 will not compress the

desired-signal gain. However, a large blocker will turn on s6, since the Roff of a switch decreases

to tens of Ohms when the signal voltage is larger than VDD +VTHp or lower than VSS −VTHn as

shown in Fig. 4.10(c), where VTHp and VTHn are the PMOS and NMOS threshold voltages, respec-

tively. The model for the sampler in the sampling phase is shown in Fig. 4.11(a). s1 is modeled

as a resistor Ron, and s6 is modeled as two ideal diodes with threshold voltage VTHp and VTHn.
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Since the voltage on Cs will be clipped to VDD +VTHp and VSS −VTHn due to s6, the sampled

blocker signal is as shown in Fig. 4.11(c). Since the desired signal will lose gain when Vsp is

clipped (Fig. 4.11(d)), the sampler in the presence of a large blocker can be modeled as an LPTV

system with a period of Tblk = 1/fblk as shown in Fig. 4.11(b). Assuming the NMOS and PMOS

threshold voltages are the same (VTHp = VTHn = VTH) and the input is biased at the midpoint of

the rail-to-rail voltage (Vbias = (VDD +VSS)/2), the desired-signal gain versus time is

G(t) =


Gs |Ablkcos(2π fblkt)| ≤VRTR/2+VTH

0 |Ablkcos(2π fblkt)|>VRTR/2+VTH,

(4.17)

where Gs is the signal gain without the blocker and VRTR = VDD −VSS is the rail-to-rail voltage.

The desired signal gain without frequency shifting can be derived as [67]

Gs,blk =
1

Tblk

∫ Tblk

0
G(t)dt =

Gs

π

(
π−2arccos

(
VRTR/2+VTH

Ablk

))
. (4.18)

The blocker amplitude resulting in a gain compression of 1 dB is

Ablk,1dB =
VRTR/2+VTH

cos
(
π/2 · (1−Gs,blk/Gs)

) ≈ 1.015(VRTR/2+VTH). (4.19)

For a differential SCRX without the NPF, considering 3 dB loss of the single-ended-to-differential

converter and a Gblk +6 dB blocker-signal gain of the sampler, the blocker B1dB is

B1dBwoNPF = 20log(1.015(VRTR/2+VTH))+10− (Gblk +6)+3 (dBm), (4.20)
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where Gblk is around −2.2 dB as the desired-signal gain since compared with LO frequency, the

blocker frequency offset is small. The B1dB depends mainly on the rail-to-rail voltage and the

threshold voltage of the transistor.

Fig. 4.12 shows the calculated and simulated B1dB versus VRTR of a differential SCRX with-

out an NPF. For the calculation, transistor threshold voltage VTH in (4.20) is set to 0.4 V. In the

simulation, ideal Gm cells are used to show the B1dB of transistor-level SC circuits only. The

LO frequency is 100 MHz and blocker frequency offset is 30 MHz. The simulated B1dB increases

slightly less with VRTR than the calculated value since the Ron is smaller when VRTR increases,

which increases the Gs. If we keep Ron fixed by fixing the VRTR of the turn-on mode to 1.2 V, the

simulated B1dB matches the calculation very well (second curve in Fig. 4.12).

4.2.6 Switched-Capacitor Front End with N-path filter

The NPF (Fig. 4.3(a)) has been extensively analyzed in [23, 24, 26, 68]. Its frequency-translation

mechanism shifts the baseband low-pass impedance to the LO frequency resulting in a band-pass

impedance. An OB blocker can be reduced at the RF input by the low OB NPF impedance. The

NPF in this work can be turned off by disabling s0. With the NPF, the NF increases due to the filter

insertion loss at the RF input. The behavioral-level simulated conversion gain and NF are shown in

Fig. 4.21. The conversion gain and NF both degrade by 0.7 dB due to the NPF. The B1dB improves

thanks to the OB attenuation before the sampler. Theoretically, the maximum B1dB improvement

due to NPF is (2Ron +Rs)/2Ron, which is around 7 dB for 20 Ω switches.
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Figure 4.13: Schematic of the switched-capacitor RF receiver.

4.3 Implementation of the RF Front End

The schematic of the RF receiver prototype is shown in Fig. 4.13. It consists of the SC circuits, the

baseband Gm cells, TIAs, and a clock generator. In the fully differential architecture, a differential

NPF [23] is used at the RF input and the two Cs capacitors with opposite phases share the same Ch

in the IIR filter to eliminate the DC and even-order LO harmonic responses. The corresponding two

banks in Fig. 4.3(a) are merged into one bank in Fig. 4.13; as a result, we need eight capacitors for

Cs and four capacitors for each Ch. The NMOS and PMOS in the CMOS switches are sized equally

to reduce the charge injection and clock feedthrough. The Ron of the sampling switches s1 and the

output switches s5 is 14 Ω, while the other switches are sized for 20 Ω. The Cs is implemented

with a metal-oxide-metal (MoM) capacitor bank with switches to ground. The Cs tuning range is

1–16 pF with a 1 pF step. The Chs are identical with an effective single-ended capacitance of 50 pF

and are realized with a combination of differential MoM capacitors and MOS capacitors to ground.
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The Gm cells combine the four-phase output signals from the SC circuits; each two Css with

opposite phases share a single Gm cell which changes the hold time to 4Ts when converting the

DT signal to CT. The Gm cells are realized by CMOS inverters with a tail current (Fig. 4.13) oper-

ating from a 1.6 V supply. The Gm input-common-mode voltage is set by VCM in the reset phase.

Common-mode feedback circuits set the output common-mode voltage to 0.8 V. A 5:7 size ratio

is used to approximate the 1 :
√

2 ratio for the harmonic recombination to eliminate the harmonic

down-conversion. Dummy Gms are used to balance the load of the previous stage. The transcon-

ductance of the size-5 Gm cell is 40 mS. To reduce the flicker noise, a large transistor is used with

l=1 µm, resulting in 40 pF input-parasitic capacitance. Since the desired signal is already down-

converted at the Gm input, this parasitic capacitor will not limit the receiver’s frequency range.

Each Gm cell can be tuned with a nine-bit control code to calibrate the harmonic rejection ratio

(HRR) as in [36]. During the calibration, a harmonic signal is provided at the RF input and the Gm

cells are externally tuned to minimize the baseband output power. This calibration cannot achieve

high HRR for 3rd and 5th order LO harmonics simultaneously as explained in [36].

The clock divider generates eight nonoverlapping clock signals with a 1/8 duty cycle and drives

the switch drivers. The drivers for the switches in the NPF and IIR filter can be turned on or off

to change the filter order. The switch drivers are DC coupled to the switches. Since the receiver’s

VCM is 0.8 V, and the rail-to-rail voltage is 1.2 V, the VDD and VSS of the clock generator are

chosen to be 1.4 V and 0.2 V respectively to make sure VCM = (VDD −VSS)/2. Fig. 4.14(a) shows

the block diagram of the clock divider. The latch-based counter generates an 8-phase 1/2-duty-

cycle clock signal X⟨7 : 0⟩. The latch output signals are combined by an array of AND gates to
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Figure 4.14: (a) Block diagram of (a) the clock divider and (b) the clock driver circuits. (c) Current
consumption breakdown of the clock generator for a 0.2 GHz LO frequency.

generate a 1/4-duty-cycle clock Y⟨7 : 0⟩ for the retiming circuit. After retiming by the 2-phase

non-overlapping clocks CA and CB, the 8-phase 1/8-duty-cycle nonoverlapping clock P⟨7 : 0⟩ is

generated. The retiming scheme relaxes the noise requirements of the counter and the AND-gate

array. The complementary clocks for CMOS switches are generated by clock drivers and can be

enabled with the signal EN as shown in Fig. 4.14(b). LOp and LOn drive the PMOS and NMOS in

the switch respectively. The digital buffer in the LOn branch is used to equalize the delay of LOp

and LOn, and the delay mismatch needs to be smaller than the gap between two non-overlapping

clocks. The current consumption breakdown of the clock generator is shown in Fig. 4.14(c). For

a 0.2 GHz LO frequency, the clock divider consumes 5.1 mA, while each clock driver consumes

1.2 mA, resulting in a total current of 13.5 mA when all the drivers are turned on.
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Figure 4.15: Transistor-level simulation of the gain/conversion gain at node VRF,NPF, VBB,NPF,
VGm,SCRX for a 0.2GHz LO frequency. All the transfer curves are normalized for equal in-band
gain of 0 dB. VRF,NPF, VBB,NPF, and VGm,SCRX are the nodes before non-linear active circuits in
RF NPF, mixer-first receiver, and the proposed SCRX respectively as shown in Fig. 4.1(b)(c)(d).

Fig. 4.15 shows the transistor-level simulated gain or conversion gain of the proposed SCRX

and a conventional NPF with the same total switch size (Ron = 2.5Ω) and a same total history

capacitance of 240 pF including the Gm input parasitic capacitance Ch,gm. The power consumption

of the clock generator in the SCRX and in the NPF should be the same given they have the same

total switch size. For the NPF, the OB attenuation at the RF input is limited by the finite Ron,

and the attenuation at baseband is limited by the low-order filtering. In the proposed SCRX, when

all of the filters are turned on, the SC circuits provide a 70 dB blocker attenuation at a 100 MHz

frequency offset before the Gm cell which is 45 dB better than the NPF.

The calculated conversion gain (VIout/(Vs/2)) and DSB noise figure using the differential

version of (4.7) and (4.15) are shown in Fig. 4.21 and match the behavioral-level simulation re-

sults. With NPF, the gain and NF degrade by 0.7 dB but don’t change with LO frequency. In the

transistor-level simulations, the gain is 41.3 dB, and the NF is 7 dB for a 0.1 Gz LO and both de-
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Figure 4.16: Chip photo.

grade with LO frequency since the switches and routing have parasitic capacitance and the clock

signals with a fixed rise/fall time and a fixed gap between the non-overlapping phases reduce the

switch-turn-on-time to clock-cycle ratio at high LO frequencies. The gain and NF also degrade in

the behavioral-level simulation (Fig. 4.21) when the parasitic capacitance and non-ideal clock are

included.
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4.4 Measurement Results

The chip prototype was fabricated in a 40 nm LP CMOS process and the active area is 1.4×1.45mm2

(Fig. 4.16). Around 40% of chip area is occupied by MoM capacitors. The Cs value is set by the

impedance matching requirements, and Ch value is set by the IF bandwidth requirements as dis-

cussed in section 4.2. The availability of higher capacitance density would directly reduce the chip

size. In the measurements, an off-chip 180◦ hybrid drives the differential RF inputs as shown in

Fig. 4.13 and the hybrid loss was calibrated out for all measurements.

The differential S11s for LOs from 0.1 to 0.7 GHz are calculated from the measured two-port S

parameters of the differential RF inputs. Fig. 4.17(a) shows the S11 of the receiver with third-order

IIR filtering without the NPF. Wideband impedance matching is achieved; the bandwidth of S11

scales with the LO frequency. The wiggle around the LO frequency is caused by the finite switch

resistance of s6 (Fig. 4.4) as discussed in Section 4.2. The S11 of the receiver with the NPF is shown

in Fig. 4.17(b). The OB S11 is higher due to the low OB impedance of the NPF. The slight deviation

of the S11 notch and the LO frequency is caused by parasitic capacitance at the RF input [26].The

measured LO leakage to the RF input is less than −60 dBm across LO frequencies.

The conversion gain VIout/(Vs/2) from the RF input to the TIA output with different filter

configurations is measured for an LO frequency of 0.2 GHz in Fig. 4.18. The roll-off increases with

higher filter order. The bandwidth changes from 4.8 to 3.2 MHz when the filter order increases. In

Fig. 4.19 the B1dB versus blocker offset frequency is measured for a 0.2 GHz LO frequency and an

in-band signal of 201 MHz. The blocker tolerance increases with filter order. The maximum B1dB

without the NPF is limited to 10 dBm since the Cs voltage is clipped due to limited rail-to-rail
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(a)

(b)

Figure 4.17: Measured differential-mode S11 for LO frequencies ranging from 0.1 to 0.7 GHz with
a 0.1 GHz step: (a) S11 without the N-path filter; (b) S11 with the N-path filter.
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(a)

(b)

Figure 4.18: Measured conversion gain VIout/VRF with different filter configurations for an LO
frequency of 0.2 GHz: (a) Conversion gain without the N-path filter; (b) Conversion gain with the
N-path filter.
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voltage as discussed in Section 4.2. With the NPF, the maximum B1dB is improved by 5 dB since

the blocker is attenuated by the NPF before the sampler. With a third-order IIR filter and an NPF,

the B1dB is as high as 14.7 dBm at a 30 MHz frequency offset. The OB third-order input intercept

point (OB-IIP3) with the NPF and third-order IIR filter is 24 dBm with a LO frequency of 0.2 GHz

and the two tones at 0.231 and 0.261 GHz.

Fig. 4.20 shows the B1dB at a 30 MHz frequency offset, the NF and the LO current consump-

tion for different IIR filter orders. With higher order filtering, the B1dB improves at the cost of a

higher LO current, while the NF only increases by 0.2 dB. For a given IIR filter order, the NPF

improves the B1dB but requires a larger LO current; the NF increases less than 0.2 dB due to the

NPF’s loss.

The measured gain, NF, B1dB and OB-IIP3 of the receiver with the NPF and third-order IIR

filter versus LO frequency are shown in Fig. 4.21, which matches the transistor-level simulation

results. The gain is 41 dB at 0.1 GHz and 38 dB at 0.7 GHz. The NF of the whole receiver is 6.8 dB

at 0.1 GHz which is higher than the NF lower limit in Section 4.2 due to finite Ron, noisy Gm

cells, and NPF’s loss. The NF increases to 9.7 dB at 0.7 GHz due to the parasitic capacitance and

non-ideal clock. The B1dB and OB-IIP3 change less than 2.5 dB and 4.5 dB respectively for the

0.1 to 0.7 GHz frequency range.

The B1dB versus relative blocker frequency offset is compared with other blocker-tolerant RF

receivers [26, 29, 35] in Fig. 4.22. To normalize the comparison (frequency offset)/IFBW is used

as the x-axis. For [26], the bandwidth of a single sideband is used since it is a RF bandpass filter.
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(a)

(b)

Figure 4.19: Measured B1dB versus blocker frequency for an LO frequency of 0.2 GHz: (a) B1dB
without the N-path filter; (b) B1dB with the N-path filter.
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Figure 4.20: Measured B1dB at a 30 MHz frequency offset, noise figure, LO current consumption
versus filter order for a LO frequency of 0.2 GHz.

With large blocker attenuation, this work achieves a higher maximum B1dB while the slope is also

larger than in other work thanks to the high-order filtering.

Fig. 4.23 shows the measured NF versus blocker power with a 0.13GHz continuous-wave

blocker for a 0.1GHz LO. In general, the NF increases due to gain compression or reciprocal

mixing. Since in this work the gain compression is low given the +15dBm B1dB, the NF degrada-

tion is probably mainly caused by reciprocal mixing; in future work this can be improved with a

low phase noise LO generator as discussed in [29].

The performance summary and comparison with the state of the art is shown in Table. 4.1. This

work has higher-order filtering before active circuits and achieves the highest B1dB. The OB-IIP3

is as high as that of other work since the high-order filtering improves the large-blocker tolerance

more than it improves the small-signal nonlinearity. The calibrated HR3 and HR5 are better than

66 and 73 dB, respectively, but they cannot be achieved with the same calibration code as explained

in [36]. A moderate noise figure is achieved. However, if we add an appropriate resistive attenuator
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(a) (b)

(c)

Figure 4.21: The (a) conversion gain VIout/(Vs/2), (b) NF, and (c) B1dB and OB-IIP3 across LO
frequency; in all cases 3rd-order IIR filtering is used; results are shown for calculations using the
differential version of (4.7) and (4.15), behavioral-level simulations (without NPF; with NPF, with
and without the parasitic capacitance and non-ideal clock), transistor-level simulations with NPF,
and measurements with NPF.
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Table 4.1: Comparison with the state of the art

This work Borremans
JSSC ‘11

Andrews
JSSC ‘10

Mahrof
JSSC ‘14

Murphy
JSSC ‘12

Darvishi
JSSC ‘13

Chen
JSSC ‘14

Technology 40nm 40nm 65nm 65nm 40nm 65nm 65nm

Architecture Switched-Cap. LNA+NPF Mixer first Mixer first FTNC NPF DT RX

Filter order 
before active circuits 1-4 0 1 1 1 1 NA

RF input frequency 
range (GHz) 0.1-0.7 0.4-6 0.1-2.4 0.2-2.6 0.08-2.7 0.1-1.2 0.5-3

Gain (dB) 40 70 70 26.5 72 25 35

Output BW (MHz) 3.2-4.8 0.4-30 <20 12 2 42 10.5-
63.53

NF (dB) 6.8-9.7 3-7 3-5 7.5 1.5-2.41, 3.5-5 2.8 6.8-13.2

OB-IIP3 (dBm) 24@30MHz 10 25
@20MHz

18
@>450MHz

13@20MHz1

17@20MHz
26

@50MHz >11

Max. B1dB (dBm) 15 <-5 <6 NR <01, <5 7 -1

HR3/5 (dB) >38/>35
>66/>73 (cal.) NR 35.5/42.6 NR >42/>45 NA >46/>51

Power (mW) Ana : 52(32.5mA)
LO: 7-53 (6-44mA) 30-55 30-70 13.9 35-78 18-57.4 211-5404

Area(mm2) 2.03 2 0.75 0.2 1.2 0.27 5.9

Adding a resistive attenuator before the RXs to normalize all B1dB to 15dBm 

Attenuation (dB) 0 20 9 NA 151, 10 8 16

NF with normalized 
B1dB(dB) 6.8-9.7 23-27 12-12 NA 16.5-17.41, 

13.5-15 10.8 22.8-29.2

1. with noise cancellation 2. single side band 3. Bandwidth of DT RF signal processor, BW is proportional to LO frequency
4. without clock synthesizer and regulator 5. including pad frame
NA: not available, NR: not reported.
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before the other receivers so that they achieve a B1dB of 15 dBm, the noise figure performance of

the presented approach is excellent under these normalized operating conditions.

4.5 Conclusions

In this chapter, a switched-capacitor RF receiver with high-order embedded RF filtering is pre-

sented. A 0.1–0.7 GHz receiver prototype achieves as high as fourth-order filtering before the non-

linear active baseband circuits. The HRR is higher than 66 dB with calibration. Thanks to the

high-order passive SC RF filtering, the B1dB is as high as 14.7 dBm for a blocker offset as small

as 30 MHz with only a moderate NF penalty.

The key drawback of the SC receiver is the noise performance is limited by the SC circuit

and cannot be improved with better process. In the following chapters, several techniques are

investigated to improve the noise performance.

4.6 Appendix

Using the same LPTV analysis as in [73, 74], the sampler (Cs with s1 and s6 in Fig. 4.4(a)) can

be analyzed as follows. First, in one time interval, the Vs propagates to Vin (Fig. 4.4(a)) with a

response of

d
dt

Vin(t) =− 1
RsCs

Vin(t)+
1

RsCs
Vs(t), nTs ≤ t < (n+1)Ts. (4.21)
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Using (70) and (71) in [74], and considering there is only one time interval in the SC circuit with

zero initial conditions, the response is

d
dt

Vin(t) =−2π frcVin(t)+2π frcVs(t)+
∞

∑
n=−∞

[−Vin(t)δ(t − (n+1)Ts)], −∞ < t < ∞, (4.22)

where frc = 1/2πRsCs, and δ(·) is the Dirac function. The spectrum of input voltage is a combina-

tion of the frequency-shifted source signal as in (4.1) in Section 4.2. Using (77) and (78) in [74]

and (4.22), the frequency domain transfer function is

Hn( f ) =
1

j2π f +2π frc
[2π frc − fsG( f −n fs)], (4.23)

where G(f) is a function that makes the voltage at switching moment t = nTs satisfy

∞

∑
n=−∞

F (Vin(t)δ(t −nTs)) =
∞

∑
n=−∞

[G( f ) ·F (Vs(t))]∗δ( f −n fs) · fs. (4.24)

We now calculate G(f). In one time interval, the final condition with a sinusoidal source voltage

(Vs = exp(j2πft)) and zero initial condition can be derived from (82) in [74]:

Vin((n+1)Ts) =
1

1+ j f/ frc

[
e j2π f Ts − e−2π frcTs

]
e2π f nTs. (4.25)

Since Vin(nTs) = G(f)exp(2πfnTs) and fs = 1/Ts, G(f) can be expressed as (4.6) in Section 4.2.

The Vin(nTs) is the final condition of one time interval which is the sampled voltage Vsp[n]

(Fig. 4.4(a)). The sampler can thus be modeled as an ideal sampler with G(f) as shown in Fig. 4.4(b).
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Using (4.6) and (4.23), the transfer function from the source voltage to the input node can be ex-

pressed as (4.2) in Section 4.2.



Chapter 5

Chopping Switched-Capacitor Receiver

with Integrated Blocker Detection

5.1 Introduction

The switched-capacitor receiver (SCRX) presented in Chapter 4 uses SC circuits to realize high-

order and high-linearity filtering to achieve high OB linearity even for a close-by blocker. The

drawback of the SCRX is its relatively high noise figure (NF) and need for large-area baseband

transconductors (Gms) to reduce RX in-channel flicker noise. In this chapter, a chopping SC re-

ceiver with integrated blocker detector (Fig. 5.1) is presented. It achieves input impedance match-

ing, programmable high-order filtering, and mixing similar to the SCRX in Chapter 4. The RF SC

front end has been modified to improve noise performance. A chopping technique is merged into

the SC circuits to reduce the transconductor’s (Gm) size and flicker noise. We use inverter-based

88
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in out

Figure 5.1: Proposed chopping switched-capacitor RF receiver with blocker detection.

Gm cells to reduce the supply voltage, and minimum-channel-length transistors to reduce Gm size.

A blocker detector is integrated with the SC receiver to detect the OB RF blocker envelope with

a short response time before the blocker is propagated to the Gm cells. The filter order can be

increased with a feedback loop when a large blocker is detected to make the filter order adapt to

the blocker power.

The chopping SC RF receiver is described in Section 5.2. Section 5.3 describes the blocker de-

tection. The front-end architecture and circuit implementation are presented in Section 5.4. Mea-

surement results are provided in Section 5.5 , and Section 5.6 presents our conclusions.

5.2 Chopping Switched-Capacitor RF Receiver Design

The linear, passive SC RF circuit located in front of the receiver active baseband circuits pro-

vides high OB blocker tolerance, but receiver noise performance is limited by the switches. In this
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Figure 5.2: Simplified architecture of the switched-capacitor receiver.

chapter, a modified SCRX is developed to improve noise performance. The chopping technique is

incorporated into the modified SC receiver to solve the flicker noise problem [77].

5.2.1 Switched-Capacitor Receiver

Fig. 5.2 shows the simplified architecture of our earlier SCRX with eight time-interleaved SC

banks [5]. At the RF input, the NPF creates a bandpass input impedance to reduce the OB blocker,

and the RF signal is sampled on Cs by s1 with a sampling frequency of fs. The input impedance

matching is achieved by discharging the sampling capacitor Cs through switch s5. The high-order

passive discrete time (DT) IIR filter [57] further attenuates the OB blocker before it propagates to

the baseband Gm input. Each SC branch (e.g. Ch1 with s2) provides an additional order of filtering.

Filter order programmability is realized by enabling and disabling the switches attached to the

history capacitors Chi. The Gm cells amplify the baseband signal and their transconductances are

scaled in different banks to achieve harmonic rejecting down-conversion as in a harmonic rejection
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Figure 5.3: (a) Switched-capacitor RF receiver without filtering [5]. (b) Proposed approach to
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mixer [78]. The desired signal is located at the receiver LO frequency fLO = fs/8. The analysis of

the SC receiver is described in [5].

5.2.2 Improving Noise Performance of the Passive Switched-Capacitor RF

Front End

Fig. 5.3(a) illustrates an SC RF receiver without filtering. To achieve RF input impedance matching

to an RF source with impedance Rs at a sampling frequency fs, the capacitance of Cs needs to be

Cs ≈ 0.63/fsRs. The noise factor F of the passive SC RF circuit is then

F = 1+
Ron,1

Rs
+

1
2Rs|G( fs/8)|2

[
e−1/ fsRsCs

fsCs
+

1
αgm fsCs

]
, (5.1)

where Ron,1 is the on-resistance of switch s1, αgm = Cgm/(Cgm +Cs), Cgm is the Gm input parasitic

capacitance; G(f) is the equivalent continuous-time (CT) transfer function before the CT signal is
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sampled by the sampler (Cs with s1 and s5):

G( f ) =
1

1+ j f/ frc
·
[
1− e−2π( frc+ j f )/ fs

]
, (5.2)

with frc = 1/(2πRsCs). Using the RF input matching condition, the noise factor can be simplified

to F = 1+Ron,1/Rs +0.27+1.32/αgm. The second, third, and fourth terms in the noise factor

formula are caused by switches s1, s5, and s4 respectively. The noise from s1 can be reduced using

switches with smaller Ron; the noise from the IIR filter can be ignored [5, 57]; and the noise from

Gm and other baseband circuits can be suppressed by using large transconductances. Output switch

s4 is the dominant noise source that limits noise performance and should be removed to improve

the noise factor.

Moving switch s4 to the Gm output (Fig. 5.3(b)) improves the SC receiver’s noise performance.

The noise from s4 is suppressed by the Gm as in a conventional passive mixer [79]. Ignoring the
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Gm noise, the noise factor of the modified SC receiver is F = 1+Ron,1/Rs +0.27. Fig. 5.3(c)

shows the calculated and behavioral-level simulated noise figure (NF) of the conventional and

modified SC receivers for a 1 Ω switch Ron. The Gm noise is ignored. By relocating s4, the NF

is improved by 3.8 dB with the theoretical lower limit of the NF at 1 dB. In real circuits the NF

will be higher than the lower limit due to non-idealities such as the non-zero switch Ron, clock

non-ideality, and the parasitic capacitor especially at high LO frequency. Fig. 5.3(d) shows the

simulated behavioral-level NF versus LO frequency with realistic circuit parameters. For a 10 Ω

switch Ron, the NF is 1.6 dB at low frequencies and increases slightly at high frequencies due

to the finite slope of the non-overlapping clock. Adding the parasitic capacitors at the RF input

(Cpar1 = 2pF) and the sampling node (Cpar2 = 3pF) to the model (Fig. 5.3(a)), the NF is higher

and increases even more at higher LO frequencies. Capacitor Cpar1 directly reduces the RF signal

at high frequencies resulting in an increase in NF.

Taking into account the parasitic capacitance Cpar2 and Cgm (Fig. 5.3(b)), the receiver input

impedance with NPF at an LO frequency fLO is 0.63/[(Cs +Cpar2 +Cgm)fLO]/8. The presence of

Cpar2 and Cgm results in a maximum LO frequency Flo,max when Cs is set to 0. If the LO frequency

is higher than Flo,max, the receiver input resistance decreases which reduces the RF signal and

increases the NF. Reducing the parasitic capacitance Cpar2 improves noise performance.

A drawback of the modified SC receiver is that the Gm parasitic capacitor (Cgm) limits the

frequency range even if other non-idealities are ignored. For the inverter-based Gm cell shown in

Fig. 5.4, the transconductance gm is proportional to W/L and Cgm is proportional to WL for a

given process and bias condition [80]. Using transistors with smaller length in the Gm cell reduces



94

Cgm while not changing gm. However, small-size Gm cells increase the flicker-noise corner of the

receiver since flicker noise corner frequency fc is proportional to gm/WL [80]. Fig. 5.4 shows the

simulated Gm parasitic capacitance, flicker noise corner, and the calculated maximum fLO versus

the transistor length, assuming the total Gm transconductance in one SC bank in the modified SC

receiver is 100 mS for both I and Q paths. We observe a trade-off between maximum fLO and

flicker noise corner. To achieve a 0.6 GHz maximum fLO, the flicker noise corner is around 2 MHz,

a value too high for a signal bandwidth of several MHz. It is therefore necessary to lower flicker

noise while achieving high maximum fLO.

5.2.3 The Chopping Switched-Capacitor RF Receiver Architecture

To break the trade-off between maximum fLO and flicker-noise corner in the modified SC receiver,

an SCRX with chopping is presented to remove the Gm flicker noise. Minimum-length transistors

are used in the Gm cells to maximize the receive frequency range and reduce the Gm area.

The operation of our modified SC receiver is shown in Fig. 5.5(a). The sampling rate of the

eight time-interleaved SC banks is fs resulting in an fLO of fs/8. For SC band #i, both the desired

signal at fLO and the interference at the LO harmonics (e.g. 3rd and 5th LO harmonics) are down-

converted to node Vsp⟨i⟩. The Gm flicker noise is then added to the desired signal. The Gm output

currents Igm⟨i⟩s for all SC banks are combined before being amplified by the transimpedance am-

plifier (TIA) with phase shift iπ/4. Since the Gm cells are scaled as a sine wave as in a harmonic

rejection mixer [78], the down-conversion from 3rd and 5th order harmonics is rejected and the

flicker noise remains in the desired signal band.
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By adding choppers before Cs and after Gm (Fig. 5.5(b)), the desired signal is up-converted to

the chopping frequency fchop = fLO/2, before it reaches the Gm input. The desired signal is down-

converted back to baseband before all Gm currents are combined, while the Gm flicker noise is

up-converted to the chopping frequency. Fig. 5.6(a) shows the Chopping SCRX with high-order

filtering. All switches are driven by eight-phase non-overlapping clock signals p′1 to p′8. Choppers

in series with the switches attached to Chi are used to ensure that IIR filter transfer function is

maintained while chopping. The chopper and the SC circuits can be merged while replacing the

clock signals to a sixteen-phase non-overlapping clock p1 to p16 (Fig. 5.6(b)). Switches driven by

p′i and the attached chopper are replaced by two cross-coupled switch pairs driven by pi and pi+8, so

that fchop = fs/16. The sixteen time intervals can be equally divided into two groups. The sampling

polarity is changed every eight time interval. At the end of each eight time interval, the Cs is reset,
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Figure 5.7: Block diagram of the switched-capacitor RF receiver with RF blocker power detector.

so the circuits between different choppers have no memory effect, resulting in a transfer function

for the chopping receiver that is identical to the transfer function of a receiver without chopping. In

addition, the noise source of each switch in our chopping receiver is independent, with one switch

pair turned on in the chopper at each time interval. The noise performance from the SC receiver’s

thermal noise with chopping and without chopping should be the same.

5.3 Programmable Blocker Filtering and Blocker Detection

The SC receiver with programmable blocker filtering and blocker detection (Fig. 5.7) is shown

for simplification with the singled-ended SC receiver driven eight-phase clock without chopping.

The programmable filter is used to improve OB linearity. The SC circuits placed before the Gm
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cells have very high linearity with blocker tolerance limited only by supply voltage and transistor

threshold voltage to achieve the rail-to-rail blocker tolerance [5]. However, for the SC receiver

without filtering (Fig. 5.3(b)), OB linearity is limited by active Gm cells. By introducing high-

order filtering into the SC receiver, the OB blocker can be attenuated before it is amplified by the

Gm. High-order filtering is achieved by the NPF (Ch0 with s0) at the RF input and the second-

order IIR filter (Ch1 with s2, and Ch2 with s3) after sampling, with filtering occurring sequentially.

For SC bank #1, the filter attenuates the OB interferer in p1 to p3. Since the signal is propagated

only to the TIA in p4, during this time interval OB blocker amplitude at Gm input is already

attenuated to reduce the distortion generated by the analog circuits. While higher-order filtering

before Gm cells provides larger OB attenuation and better OB linearity, the high-order filter needs

more clock power consumption to drive the SC filters. This power dissipation is unnecessary when

OB interference does not exist or has lower power. The filter thus needs to be programmed to a

lower-order filtering mode with a lower OB interference level.

We incorporate an integrated blocker detection before the non-linear Gm cells, so that the

filter order can be tuned when a large blocker is detected. Since the blocker residue is available

on the history capacitor Ch2, simple detector implementation can be achieved. In the SC receiver

(Fig. 5.7), the last IIR filter is always turned on as a default configuration. After s3 is turned on,

Cs and Ch2 have the same voltage, and Cs holds this voltage when s4 is turned on. Vh2 is thus

a replica of the voltage amplified by the Gm, and holds the blocker residue after filtering. In the

blocker detector, the high-pass filter attenuates the in-band signal and the envelope detector detects

the blocker residue to configure the filter order. Because Ch2 is tens of pF, detecting the blocker
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at Vh2 results in very low circuit overhead and performance penalty, so detector input capacitance

can be ignored and does not affect the transfer function. If we try to detect the blocker directly at

the Gm input node, the minimum capacitance at Vsp node will increase and limit the maximum fLO

as discussed in Section 5.2. Additionally, switches need to be added after the detector to ensure

that only the voltage is amplified when s4 is turned on. If we detect the blocker at Gm output, a

large AC coupling capacitor must be used since the detector requires low input impedance due to

the low TIA input impedance.

5.4 RF Receiver Circuit Implementation

5.4.1 RF Receiver Circuit Architecture

The architecture of the chopping SC receiver prototype IC (Fig. 5.8) consists of four SC banks,

common-mode feedback (CMFB) circuits, a blocker detector, and a clock generator. Off-chip TIAs
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convert Gm output currents to voltages in I and Q paths. In each SC bank, the Cs pairs with

sampling phase pi and pi+4 share the same Chs in NPF and the IIR filters to reduce the DC and even-

order LO harmonic response. The switches are implemented with CMOS transmission gates. The

NMOS and PMOS in the switch have the same size W/L = 100µm/60nm. The Gm cells generate

I and Q baseband currents. The Gms push current only to the TIAs when the output switches are

turned on, which means the Gms need to be activated only in 1/8 duty cycle in one period 16Ts.

The Gms are therefore powered down in inactive time intervals to save power, achieved by the

switched Gm. The on-chip LO divider generates the 16-phase non-overlapping clock signals, with

filter order configured by the clock drivers as in [5].

Harmonic rejection is implemented by scaling the Gms in I and Q paths as cosine and sine

waves. The two main Gm factors used in the I and Q paths are gm · cos(iπ/4), gm · sin(iπ/4) (fac-

tor #1) and gm · cos(iπ/4+π/8), gm · sin(iπ/4+π/8) (factor #2) [81], where gm is the effective

transconductance in the DT mixing [5], and i is the SC bank index. Total Gm transconductance

in these two cases is 4.8gm and 5.2gm. Since the DC current is proportional to the transconduc-

tance, using factor #1 can save power consumption. However, because the switched Gm is used,

total DC currents in the I and Q paths are not the same at different time intervals generating a

ripple on the supply. Because of this effect factor #2 with a 5:12 size ratio is used to approxi-

mate the sin(π/8) : sin(3π/8) ratio resulting in an effective gm of 114 mS. The harmonic rejection

ratio (HRR) depends on the gain and phase mismatches [59], and can be improved using calibra-

tion [5, 36].

The gain of the receiver can be derived as in [5]. The samplers are modeled as a CT transfer
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function G(f) and ideal samplers with choppers, and the switched Gm cells are modeled as DT

mixers with chopping followed by reconstruction circuits to convert the DT signals back to the CT

domain. The conversion gain is

CG( fin) =
Vout( fin − fs/8)

Vs( fin)
= G( fin) ·

1
Ts

· 1
2

gm ·Tssinc
(

π
fin − fs/8

fs

)
·R ≈ 1

2
G( fin)gmR, (5.3)

where fin is the input RF frequency close to an LO frequency of fs/8, gm is the equivalent Gm

transconductance for DT mixing, and R is the feedback resistor in the TIA. The sinc function

approximates to 1 for fin close to fs/8. The noise factor of the receiver is

F =1+
Ron,1

Rs
+

1
|G( fs/8)|2

{
e−1/ fsRsCs

2 fsRsCs
+

1
gmRs

[
γ[sin(π/8)+ sin(3π/8)]+

2γgmCMFB

gm

+
2

gmR
+

V 2
n,op(1+R/Ro,gm)

2

2kT gmR2

]}
,

(5.4)

where G(f) is the sampler gain shown in (5.2), gmCMFB is the transconductance of the common-

mode feedback (CMFB) circuit, V2
n,op is the input referred voltage noise source of the op-amp in the

TIA, and Ro,gm is the Gm output resistance. In a transistor-level circuit the sampler gain decreases

at higher LO frequencies since the parasitic capacitance of the switches and the routing wire limits

the bandwidth at the RF input. In addition, the non-ideal non-overlapping clock with finite rise

and fall time reduces the switch turn-on time in the sampling phase at higher LO frequency which

also reduces the sampler gain. NF thus increases with LO frequency in a transistor-level circuit

due to reduction in G(f) in (5.4). Using a more scaled process with lower parasitic capacitance

and a better clock generator improves the NF at high LO frequencies. The Gm-TIA circuit is
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Figure 5.9: Schematic of the baseband switched Gm cell.

also a significant noise source in the chopping SCRX . The NF can be improved with larger gm

value in (5.4). The finite gm output resistance increases the noise contribution of the TIA opamp.

The output resistance of a 100 mS Gm with a minimum-channel-length transistor is only several

hundred Ohms, To improve this value, the negative Gm at the Gm output is used (described in

Section 5.4.2).

5.4.2 Baseband Circuit

Circuit implementation of the switched Gm (Fig.5.9) consists of a main Gm cell and a negative

resistor. The input common mode voltage is set to VCM in reset phase (Fig. 5.8) and the output

common mode voltage is set by the CMFB circuit as in [29]. Inverter-based design [82] is adopted

to improve power efficiency. In the main Gm cell, transistors M1-M4 provide transconductance,

and the NMOS and PMOS are sized to achieve the same transconductance. Transistors M5-M12

are the switches that propagate the Gm output current to the TIA and achieve the chopping. The
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DC current of the Gm is cut down when the switches are off to save power [83]. The minimum

length transistors with low output impedance used in the main Gm cell increase the noise contri-

bution of the TIA op-amp. A negative resistor [30] is adopted at the Gm output node to increase

output impedance. Transistors M13-M16 generate negative resistance, and M17-M24 cut off the

DC current as in the main Gm cell. All transistors in the switched Gm use minimum length thanks

to the chopping technique. In the same way as we saw with the switches, the Gm area is scaled with

the CMOS process. Compared with switch-Gm in [83], transistors M1-M4 and M13-M16 work in

saturation region when the switches are on, and work in inversion mode when the switches are off

to avoid build-up time of the inversion layer while the switches are turned on as well as to avoid

the parametric loss at Gm input [84]. If M1-M4 work in depletion mode when the switches are off,

a parametric loss of (Cs +Cgm,dep)/(Cs +Cgm,sat) is generated when the switches are turned on,

where Cgm,dep is Gm input capacitance in depletion mode and Cgm,sat is the Gm input capacitance

in saturation region, Cgm,dep < Cgm,sat.

The transistor-level simulated conversion gain of the SCRX without NPF is 36.3 dB which

matches the calculated 37.4 dB conversion gain. The simulated NF of the behavioral-level receiver

with only SC noise without NPF is 1.6 dB with 10 Ω switches Ron which does not change with

LO frequency (Fig. 5.14(b)). With parasitic capacitance at RF input and clock non-idealities, NF

increases with LO frequency. The simulated NF of the transistor-level receiver with parasitics and

clock non-idealities is 3.9 dB for a 0.1 GHz LO with an increase to 8.5 dB when LO is 0.6 GHz.

Compared to the NF with and without noise from the Gm-TIA circuit, we find Gm-TIA to be the

main noise source.
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Figure 5.10: (a) Schematic of the blocker detector. (b) Input and output waveforms of the blocker
detector.

5.4.3 Blocker detection circuit

The blocker detector (Fig. 5.10(a)) consists of eight AC coupled common-source transistors with

resistor and off-chip capacitor loads and a replica. The 55 Ω RB and 1.3 pF CB compose a high-

pass filter to attenuate the in-band signal. All the transistors work in weak inversion mode. The

output current of each transistor is Id = I0 · exp(kVgs) [85]. For history capacitor voltage Vh2⟨i⟩,

output current is I0[exp(kVh2⟨i⟩)+ exp(−kVh2⟨i⟩)]≈ 2I0 + I0k2Vh2⟨i⟩2. Since each Vh2⟨i⟩ has a

phase shift of iπ/4 and the output current of the replica is 8I0, the detector output voltage is

Vdet = I0k2
4

∑
i=1

[
Vh2,pkcos(ωIFt + iπ/4)

]2
= 2I0k2V 2

h2,pk, (5.5)

(Fig. 5.10(b)) with the blocker detector detecting the envelope of the IF blocker signal. The load

resistor RL is 15 kΩ and the load capacitor CL is 10 pF to achieve a small settling time.
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5.5 Measurement Results

Our chip prototype was fabricated in a 65nm CMOS process with an active area of 1.63 mm2

(Fig. 5.11). The supply voltage of the baseband circuit is 1.1 V and 1.25 V for the LO circuits.

Fig. 5.12 shows measured differential input reflection coefficient s11. The receiver achieves a

wideband impedance matching without NPF as in [5]. With NPF, the OB S11 is higher due to low

NPF OB impedance, and the deviation of S11 center frequency and LO frequency is caused by RF

input parasitic capacitance [26]. For the remainder of the measurements, an off-chip 180◦ hybrid

drives the differential RF input, and the loss of the hybrid is calibrated out.

Fig. 5.13 shows the measured conversion gain VIout/(Vs/2) and LO current for LO frequen-

cies from 0.1 to 0.6 GHz for different filter orders. The conversion gain is lower for higher LO

frequencies due to the parasitic capacitance and clock non-idealities. The OB attenuation and LO

current increase with higher filter order.
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Figure 5.12: Measured differential-mode S11 for LO frequencies ranging from 0.1 to 0.6 GHz with
a 0.1G Hz step with and without the N-path filter.

(a) (b)

Figure 5.13: Measured (a) conversion gain VIout/VRF; (b) LO current versus RF frequency for LO
frequencies ranging from 0.1 to 0.6 GHz with a 0.1GHz step and for different filter configurations.
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(a) (b)

(c)

Figure 5.14: (a) Measured and simulated NF versus IF frequency for an LO frequency of 0.1 GHz
with first-order IIR filtering; (b) Measured and simulated NF versus LO frequency for the receiver
with first-order IIR filter; (c) Measured NF across LO frequency compared with earlier switched-
capacitor receiver.
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Figure 5.15: Measured wideband transfer function for an LO frequency of 0.l GHz.

The measured and simulated NF versus IF frequencies with 0.1 GHz LO and first-order IIR

filter are shown in Fig.5.14(a). The measured flicker noise corner is 100kHz with chopping while

the simulated flicker noise corner without chopping is significantly higher. The simulated and

measured NF versus LO frequency is shown in Fig. 5.14(b)(c). The noise degradation compared

to ideal circuit is discussed in Section 5.4.2. The NF for a 0.1 GHz LO with first-order IIR filter is

4.6dB which is 2.2dB better compared with the earlier SCRX [5]. With the NPF, the NF is higher

due to NPF loss. The NF increases with LO frequency due to RF input parasitic capacitance and

clock non-idealities.

The measured wideband transfer function for a 0.1 GHz LO is shown in Fig.5.15. The HRR for

3rd order is 30 dB and for 5th order LO harmonics is 33 dB. If better HRR is needed, the calibration

method of [5, 36] can be applied. The chopping frequency for a 0.1 GHz receiver is 50 MHz. The

spurious responses due to chopping are lower than -70 dB, and are not higher than the responses

from LO even-order harmonics.
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(a) (b)

(c) (d)

Figure 5.16: (a) Measured blocker 1dB compression point versus blocker frequency; (b) out-if-
band IIP3; and (c) triple beat versus two-tone SI peak power for an LO frequency of 0.2 GHz with
different filter configurations; (d) measured B1dB, OB-IIP3, OB-IIP2 for LO frequencies stepped
between 0.1 and 0.6 GHz.
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Fig.5.16(a) shows the measured blocker 1dB compression point (B1dB) versus blocker fre-

quency for a 0.2 GHz LO. As expected the B1dB for a close-by blocker increases with filter order.

When all filters are enabled, the B1dB for a 30 MHz blocker offset is 13 dBm and the maximum

B1dB is larger than 15 dBm (3.6 Vpp if referred to a 50 Ω resistor). The OB-IIP3 (Fig. 5.16(b)) is

measured with a two-tone signal at 0.231GHz and 0.261GHz for a 0.2 GHz LO. When all filters

are turned on, the OB-IIP3 is 31dBm. The triple beat (TB) (Fig. 5.16(c)) for a 0.2 GHz LO versus

self-interferer (SI) peak power is measured with a -30 dBm adjacent-channel jammer and two-tone

SI signals with a frequency offset as small as -30 MHz and a 5 MHz frequency spacing. The TB for

a -4 dBm SI peak power is 62.5 dB with highest-order filtering, and the receiver can handle larger

than 10 dBm SI peak power. The high order filtering improves B1dB, OB-IIP3, and TB compared

with a first-order IIR filter. With NPF and second-order IIR filters, B1dB for a 30 MHz blocker off-

set is improved by 12.8 dB, OB-IIP3 is improved by 13/,dB, and TB for a -4 dBm SI peak power

is improved by 26.5 dB. In an FDD or co-existence application, the filter order can be tuned with

SI power level information available in the same device.

We measured the blocker NF for 0.1 GHz LO frequency and a blocker at 30 MHz frequency

offset with NPF and second-order IIR filter (Fig. 5.17). The NF matches the simulation result

with an LO phase noise of -150 dBc/Hz at 30 MHz offset for a 1/16-duty-cycle LO. The simulated

blocker NF without LO phase noise does not change with blocker power. We find that reciprocal

mixing mainly increases the blocker noise figure. In future work, this can be further improved

using a better clock generator. Compared to other blocker-tolerant receivers, our receiver achieves

a better blocker NF for a large blocker (5dBm) thanks to its low gain compression.
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(a) (b)

Figure 5.17: (a) Measured and simulated blocker noise with blocker at 30MHz for a 0.1 GHz LO.
(b) Measured blocker noise figure compared with other blocker tolerant receivers.

For an unknown CW OB blocker, the blocker detector can be used to adapt the filter order to

the blocker power between two communication packets. Fig.5.18 shows the filter adaptation using

the integrated blocker detector. The Gm input-referred blocker power (Fig.5.18(a)) is the blocker

power level at the input of the (nonlinear) Gm and is calculated by subtracting the normalized

measured RF filtering transfer function from the applied blocker input power. The detector output

voltage is a linear function of the Gm input referred blocker power. Fig. 5.18 shows the measured

conversion versus blocker power with adaptive filter order for a 0.2 GHz LO and 30MHz blocker

offset. The detector output voltage increases with blocker power; when the voltage is higher than

a threshold (50mV), the filter order is increased and improves gain compression. The blocker

detector transient response (Fig.5.18(c)) settles at less than 1us; after increasing the filter order,

the Vdet stabilizes again in 1us. The detector consumes only 0.2mW (including 0.1mW from bias

circuits).

When compared with the state of the art (Table 5.1), our receiver achieves the highest OB
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Figure 5.18: (a) Measured blocker-detector output voltage versus Gm input-referred blocker power
for different filter orders and blocker offset frequencies. (b) Measured conversion gain versus
blocker power with adaptive filter order for a 0.2 GHz LO and 30 MHz blocker offset. (c) The
blocker-detector transient response.
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Table 5.1: Comparison with the state of the art

This work Xu
JSSC ‘16

Murphy
JSSC ‘12

Zhou
ISSCC ‘15

Darvishi
JSSC ‘13

Lin
ISSCC ‘15

Technology 65nm 40nm 40nm 65nm 65nm
Architecture Chop. SC SC FTNC SI Canc. NPF Mixer-first

Blocker detector Yes No No No No No
RF freq. (GHz) 0.1-0.6 0.1-0.7 0.08-2.7 0.8-1.4 0.1-1.2 0.1-1.5

NF (dB) 4.6-9 6.8-9.7 1.5-2.4a

3.5-5 4.8, 5.3b 2.8 1.5-2.9

OB-IIP3 (dBm) 31 24 13a, 17 17 26 13
B1dB (dBm) 15 15 <0a, <5 4 7 13.5
TB-4dBm

c(dB) 63 NR NR 48, 64b NR NR
Max Handled Peak 

SI Power (dBm) >10 NR NR NR, -4b NR NR

OB-SFDRd (dB) 92.9 87.5 83.7a, 85 84.1 91.5 83.7

Power (mW)
Ana: 24

LO: 9.5-55.8
Detector: 0.2

Ana: 52
LO: 7-53 35-78 63-69,

107-160b 18-57.4 11

NR = not reported; a: with noise cancellation b: with self interference cancellation, calibration is 
required c: Triple beat at a -4dBm SI peak power d: OB-SFDR = 2/3(OB_IIP3-(-174dBm/Hz)-10log 
(1MHz)-NF) 
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spurious-free dynamic range (SFDR) [86]. The NF and power consumption are better than in

[5] and our receiver supports fast blocker detection. For FDD and the co-existence application,

compared with an SI cancellation method [87], our receiver provides similar TB performance and

has larger power handling. The NF increases at higher LO frequencies which is limited by parasitic

capacitance. This limitation can be improved with process scaling.

5.6 Conclusions

In this chapter, a chopping switched-capacitor RF receiver with high OB linearity is presented to

improve OB interference tolerance. The highly linear passive SC RF circuit placed before nonlinear

baseband Gm cells provides high-order filtering and improves OB linearity. By using chopping, a

key noise source in the earlier SCRX is eliminated and the NF is improved. Our blocker detector

detects the blocker residue on the history capacitor before the Gm cells and does not affect receiver

performance and makes it possible for the filter order to adapt quickly to blocker power. These

techniques provide a more efficient way to make tunable receivers survive the limiting effects of

OB interference.



Chapter 6

Analysis of Passive Gain Techniques for

Switched-Capacitor Receivers

6.1 Introduction

The passive SC receiver (SCRX) described in Chapter 4 achieves programmable high-order and

high-linearity filtering before the active circuits, resulting in a high OB linearity even for a close-

by blocker. However, its noise figure (NF) is relatively high. Since introducing signal gain can

potentially improve the NF, this chapter reviews two SCRX architectures with passive gain. The

first is a capacitor-stacking SCRX (CS-SCRX). The capacitor-stacking circuits [88] amplify the

desired signal before the active transconductor (Gm) by stacking sampling capacitors. The second is

a parametric SCRX (P-SCRX). In this approach, MOS transistors serve as the sampling capacitor;
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Figure 6.1: Core circuits of a switched-capacitor receiver.

the amplification is achieved by changing the transistor from inversion mode to depletion mode

[89]. We propose a linearized MOS capacitor to improve the linearity of the P-SCRX.

As shown in Fig. 6.1, the core circuits of the SCRX proposed in Chapter 4 consists of eight

time-interleaved SC banks. All the switches are driven by eight-phase nonoverlapping clock sig-

nals. For SC bank #1, the RF signal is sampled in p1, propagated to the Gm input node in p5 and

dumped to ground in p7. High-order SC filtering can added to this core circuitry to achieve high

OB linearity and a large OB attenuation before the nonlinear Gm cells. As described in Section 4.2,

the NF lower limit of the SCRX is 4.13 dB which is relatively high.

6.2 Capacitor-Stacking Switched-Capacitor Receiver

6.2.1 Capacitor-Stacking Concept

The schematic of the CS-SCRX core circuits is shown in Fig. 6.2. To simplify the diagram, only SC

bank #1 is shown in this figure. In contrast to the earlier SCRX (Fig. 6.1), the sampling capacitor
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sp

out

Figure 6.2: SC bank #1 of the capacitor-stacking SCRX core circuits.

is separated into two capacitors, each with half the capacitance of the conventional value. Switches

s7–s9 are added for capacitor stacking. s8 is driven by clock signal p5, while s7 and s9 are driven

by the inverted p5 clock.

Fig. 6.3 shows the operation of the CS-SCRX. In the sampling phase (p1), the RF signal is

sampled on two sampling capacitors. The sampled voltage is Vsp. In the passive-gain phase (p5),

the two capacitors are stacked, doubling the signal. The voltage propagated to the Gm input node is

2Vsp. In the reset phase (p7), the sampling-capacitor voltage is reset to ground. When SC filters are

added into this architecture, the high-order filtering phases need to be inserted before the passive-

gain phase so that the capacitor stacking does not amplify the OB interference to maintain the

SCRX’s OB linearity.

6.2.2 Noise Limitation

The SC circuits’ passive gain reduces the noise contribution of the succeeding stages. However,

noise from the dominant noise source, s5, cannot be reduced, which limits the noise performance.
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Figure 6.3: Operation of a capacitor-stacking SCRX.
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For the SCRX, the s5 noise at the Gm input is

V 2
s5
=

2kT
Cs fs

·∆ f , (6.1)

assuming Cgm is much larger than Cs. Since the source noise at the Gm input is

V 2
Rs
= 4kT Rs

∣∣∣∣G(
fs

8

)∣∣∣∣2 ·∆ f , (6.2)

the noise factor due to s5 can be written as

Fs5 −1 =
1

2RsCs fs|G
(

fs
8

)
|2
. (6.3)

In the CS-SCRX, the source noise is amplified by passive gain, however, the s5 noise is also larger

due to the Cs reduction in passive-gain phase. Assuming Cs consists of N capacitors, each capacitor

is Cs/N and the switches are ideal. These N capacitors provide a passive gain of N in the capacitor-

stacking phase. The source noise amplified by the passive gain is

V 2
Rs,CS = 4kT Rs

∣∣∣∣G(
fs

8

)∣∣∣∣2 ·N2 ·∆ f . (6.4)

Since the equivalent sampling capacitance after capacitor stacking is Cs/N2, The s5 noise is

V 2
s5,CS =

2kT
Cs fs

·N2 ·∆ f . (6.5)
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Table 6.1: Comparison of SCRX without and with capacitor stacking.

SCRX CS-SCRX
Gain (dB) 5.9 11.5
NF (dB) 4.9 4.7

Since both of the noise values increase by N2, the noise factor due to s5 is the same as that of the

earlier SCRX.

6.2.3 Simulation Results

The simulated conversion gain and NF for a SCRX with and without capacitor stacking is shown

in Table 6.1. The simulation uses ideal switches with 10 Ω on-resistance. The Gm is ideal and

noiseless with an input capacitance of 50 pF. The conversion gain is simulated at the Gm input node.

With capacitor stacking, the conversion gain is doubled, however the NF is almost not improved.

Therefore, capacitor stacking is not a good solution to improve the SCRX noise performance

since it cannot fundamentally improve the SC circuits’ noise, and the noise from the succeeding

stages can be improved by increasing the Gm gain instead of the passive gain. Also, the parasitic

capacitance of the switches limits the SCRX frequency range and reduces the passive gain.

6.3 Switched-Capacitor Receiver with Parametric Amplifica-

tion

To reduce the s5 noise, we next study parametric amplification. SC bank #1 of P-SCRX is shown

in Fig. 6.4. Compared with earlier SCRX core circuits (Fig. 6.1), the sampling capacitor is im-
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Figure 6.4: SC bank #1 of the parametric SCRX core circuits.

plemented by MOS transistors. The capacitance of the MOS capacitor is tuned by the transistor

source–drain voltage, VSD, to achieve the parametric amplification [84,89]. Both NMOS and PMOS

are used to ensure the common mode voltage does not change when changing VSD. The source–

drain node of the NMOS M1 are connected to clock signal p5, and the source–drain node of the

PMOS M2 is connected to inverted p5.

Fig. 6.5 shows the operation of the P-SCRX. In the sampling phase (p1), the VSD of M1 is Vgnd,

while the VSD of M2 is VDD. Both MOS transistors are in inversion. The capacitance is Cs. The RF

signal is sampled on the MOS capacitor, and the sampled voltage is Vsp. In parametric-gain phase

(p5), the VSDs of M1 and M2 are switched to VDD and Vgnd, respectively. The MOS transistors work

in depletion mode, and the capacitance reduces to Cs/a (a > 0). Since the charge on the sampling

capacitor does not change, the voltage propagated to the Gm input is a ·Vsp.
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6.3.1 Noise Analysis

Capacitor stacking and parametric amplification both provide passive gain before the Gm cells to

suppress the noise of the succeeding stages. The key difference is that parametric amplification

reduces switch s5’s noise contribution. The source noise after parametric amplification is

V 2
Rs,P = 4kT Rs

∣∣∣∣G(
fs

8

)∣∣∣∣2 ·a2 ·∆ f . (6.6)

Since the sampling capacitance after capacitor stacking is Cs/a, The s5 noise is

V 2
s5,P =

2kT
Cs fs

·a ·∆ f , (6.7)

and the noise factor due to s5 is

Fs5,P −1 =
1

2RsCs fs

∣∣∣G(
fs
8

)∣∣∣2 ·a . (6.8)

The dominant noise source, s5, is reduced by the parametric amplification, and the noise of

the succeeding stages can also be improved. Parametric amplification achieves better noise perfor-

mance compared with capacitor stacking. However, the MOS capacitor has limited linearity.

6.3.2 Sampling Capacitor Linearization

One of the drawbacks of the parametric amplification is the MOS capacitors’ relatively low linear-

ity. For the earlier SCRX (Fig. 6.1) and the capacitor-stacking SCRX (Fig. 6.2), linear MoM and
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Figure 6.6: Linearization of sampling capacitance in parametric amplification.

MiM capacitors can be used as sampling capacitors. When using MOS capacitors, the sampling

capacitance depends on the signal voltage, as shown in Fig. 6.6. This dependence is because, for

a NMOS transistor, if the signal voltage (Vsig) is lower than threshold voltage (VTHN), the transis-

tor works in depletion mode with a lower capacitance. PMOS capacitors have the same issue. To

improve the linearity of the NMOS capacitor, a PMOS M3 is added in parallel with M1. VSD is

VTHN +VTHP to compensate for the nonlinearity of M1 (Fig. 6.6). Also, an NMOS M4 is used to

compensate for the nonlinearity of M2. All the source–drain nodes of the NMOS transistors are

connected to Vgnd and the source–drain nodes of the PMOS transistors are connected to VDD in the

parametric-gain phase.



125

C
ap

ac
ita

nc
e 

(f
F

)
C

ap
ac

ita
nc

e 
(f

F
)

C
ap

ac
ita

nc
e 

(f
F

)

Vsig (V)

Vsig (V)

Vsig (V)

(a)

(b)

(c)

Inversion

Depletion

Inversion

Depletion

Inversion

Depletion

Figure 6.7: Simulated capacitance of (a) NMOS, (b) PMOS, and (c) CMOS capacitors versus
input voltage.
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Figure 6.8: Simulated capacitance of the linearized CMOS capacitor versus input voltage.

6.4 Simulation Results

The SCRX with parametric amplification is simulated in 65 nm CMOS process with a supply volt-

age of 1.2 V. The capacitance of the MOS capacitors (Fig. 6.6(a)) versus input DC voltage Vsig is

shown in Fig. 6.7. The NMOS and PMOS transistors have the same size of w, l = 250nm. For an

NMOS or PMOS capacitor, the capacitance in the depletion region (Cdep) is almost constant while

the capacitance in the inversion region (Cinv) depends strongly on the input DC voltage. Thus, the

depletion capacitance of a CMOS capacitor changes little with Vsig, but the inversion capacitance

is larger when Vsig is around VDD/2 as shown in Fig. 6.7(c). Since the gain of the parametric am-

plification is Cinv/Cdep, the gain of the CMOS capacitor is nonlinear when the input voltage swing

is large. For the linearized CMOS capacitor, M3 and M4 (the same size as M1 and M2) are added

as shown in Fig. 6.6(b), and VSDs of M3 and M4 are both VDD/2 in the inversion region. Compared
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Table 6.2: Comparison of SCRX with CMOS capacitor and linearized CMOS capacitor.
CMOS Capacitor Linearized CMOS Capacitor

S11 (dB) −19 −19
Gain (dB) 12 10
NF (dB) 3.7 4.0
IIP3 (dB) 20 22
B1dB (dB) 1.8 5.3
Power (mW) 26 23

with the CMOS capacitor (Fig. 6.7(c)), the Cinv of the linearized CMOS capacitor depends less on

Vsig as shown in Fig. 6.8, but the parametric gain is smaller.

Table 6.2 compares the SCRX with the CMOS capacitor and with the linearized CMOS ca-

pacitor. The switches and Gms are ideal, and the MOS capacitors are implemented by transistors.

The LO frequency is 500 MHz. The conversion gain is simulated at the input of the node Gms. The

P-SCRX with the linearized CMOS capacitor provides better linearity but less gain and higher NF.

6.5 Conclusions

In this chapter, we study capacitor stacking and parametric amplification to improve the SCRX

noise performance. Capacitor stacking provides passive gain to reduce the noise of succeeding

stages. However, it cannot improve the dominant noise source of the SC circuits, which makes

this technique inadequate to significantly improve the SCRX noise performance. Parametric am-

plification reduces the dominant noise source. However, the passive gain is limited by the MOS

transistor’s Cinv/Cdep. Also, the MOS capacitor in the P-SCRX is not as linear as the MoM and

MiM capacitors used in the earlier SCRX, which costs it the key advantage of high linearity.



Chapter 7

Conclusions

Dynamic spectrum access provides better spectrum efficiency for wireless communication but re-

quires a wideband receiver. High interferer tolerance with wide tuning range is one of the key

challenges for wideband-receiver design. This thesis focuses on improving the performance of

passive SC bandpass filters for high interferer tolerance. The passive SC bandpass filters have high

selectivity, wide tuning range, and good linearity and benefit from process scaling.

Chapter 3 presents an RF receiver with a harmonic-rejecting N-path filter (HR-NPF). In the

conventional N-path filter, the harmonic responses reduce the interferer tolerance at LO harmon-

ics. The HR-NPF achieves tunable narrow band filtering and high attenuation at the third- and

fifth-order LO harmonics, resulting in high linearity for a very wide band. With the HR-NPF, a

0.2–1 GHz RF receiver is implemented in a 65 nm CMOS process. The blocker B1dB is −2.4 dBm

at a 20 MHz offset, and remains high at the third- and fifth-order LO harmonics. The HR-NPF also

offers additional harmonic rejection for the down-conversion. With a baseband harmonic recombi-
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nation stage, the two-stage harmonic rejection approach offers a > 51dB harmonic rejection ratio

at the third- and fifth-order LO harmonics without calibration. the LO emission of the receiver is

below −90 dBm, thanks to the LNA’s reverse isolation.

Chapter 4 focuses on improving the interferer tolerance at close-by frequencies. A high-order

passive RF SC filter is presented to achieve rail-to-rail blocker tolerance. The high-order filtering is

implemented with N-path and DT IIR filters. RF input-impedance matching and down-conversion

are also achieved with passive a SC circuit to make it a fully functional RF receiver front end. The

0.1–0.7 GHz 40 nm CMOS SC receiver (SCRX) consumes 38.5–76.5 mA, achieves 40 dB gain,

24 dBm OB IIP3, 14.7 dBm B1dB for a 30 MHz blocker offset, and a 6.8–9.7 dB noise figure. The

key drawback of the SCRX is the relatively high theoretical noise figure lower limit.

Chapters 5 and 6 investigate how to improve the noise performance of the SCRX. The chopping

SCRX presented in Chapter 5 improves the noise performance by relocating the key noise source to

the active Gm output. The chopping technique eliminates the Gm flicker noise so that a minimum-

length Gm can be used for lower parasitic capacitance and smaller Gm size. Blocker detector is

integrated with the SC circuit so that the filter order can be adapted to blocker power. The 34–

80 mW 65 nm receiver prototype achieves 35 dB gain, 31 dBm OB-IIP3, 15 dBm B1dB, and 4.6–

9 dB NF. The 0.2 mW integrated blocker detector detects large OB blockers with a 1 µs response.

An SCRX with passive gain is studied in Chapter 6. Capacitor stacking can provide signal

gain before the active baseband circuits. However, it cannot improve the SCRX NF lower limit.

By replacing the sampling capacitor with MOS capacitors, parametric amplification improves the

NF lower limit. However, the receiver linearity is limited by the MOS capacitors. Also, signal gain
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is limited by the capacitance ratio of the transistor’s inversion and depletion modes. These two

techniques are therefore not implemented in the prototype IC.

This thesis offers five original contributions:

1. The analysis, design, and implementation of a harmonic-rejecting N-path filter.

2. Design and implementation of high-order SC filtering at RF input to improve receiver OB

linearity.

3. Analysis of impedance matching, conversion gain, noise performance, and linearity for the

SC receiver.

4. Analysis, design, and implementation of a chopping SC receiver to break the noise limitation

of the earlier circuit.

5. Analysis and evaluation of the passive gain of the SC receiver.

Process improvement and circuit innovation are two main engines driving the evolution of RF

receivers. The 7 nm CMOS process was on the horizon at the time this thesis was written, while the

circuit designers keep pushing receiver performance toward the device physical limits. SC circuits

feature high linearity and process scaling. IC designers should keep investigating SC RF techniques

in future work:

1. For the receiver with HR-NPF, the noise performance is limited by the partial noise canceling

because the noise from the LNA common-gate stage cannot be fully canceled. It can be

improved by redesigning the common-gate stage to achieve full noise cancellation.
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2. For the SCRX, the in-band linearity is limited by the baseband Gm. This can be improved by

linearizing the Gm cells. Linearized Gm can further improve close-by linearity.

3. The SCRX has a very high gain-compression point. However, the blocker noise figure (NF)

is limited by the reciprocal mixing as discussed in Chapter 5. Lowering the phase noise of

the clock generator reduces the blocker NF; however, the power consumption will be higher.

Using better process, a low-noise clock generator might be achievable with reasonable power

margin. Phase-noise cancellation techniques [90] can also be considered to cancel the phase

noise at baseband to improve the blocker NF.

4. The parasitic capacitor at the RF input and the Cs nodes limit the SCRX frequency range.

The parasitic capacitance in parallel with Cs can be improved with better CMOS process

because the switches’ parasitic capacitance is lower and routing can be shorter due to the

smaller switch size. The parasitic capacitance at RF input can also be improved with process

scaling since the NFP and sampling switches can be smaller. However, at the RF node, the

parasitic may be limited by ESD circuits and bonding pads. An off-chip inductor can be used

to improve high-frequency performance.

5. SC circuits can be used as the output stage of a transmitter without PA [48]. The concept

of higher order filtering in this work can also be used to achieve better transmitter noise

filtering.

6. The passive SC circuits reduce the OB self-interferer tolerance for the receiver in a frequency-

division duplex (FDD) system. Replacing the rectangular wave clock signal driving the SC
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circuits with a coded clock signal (e.g., pseudo noise code) can achieve self-interferer reduc-

tion in a code division duplex (CDD) system [91].
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