3 research outputs found

    A Power-Efficient Methodology for Mapping Applications on Multi-Processor System-on-Chip Architectures

    Get PDF
    This work introduces an application mapping methodology and case study for multi-processor on-chip architectures. Starting from the description of an application in standard sequential code (e.g. in C), first the application is profiled, parallelized when possible, then its components are moved to hardware implementation when necessary to satisfy performance and power constraints. After mapping, with the use of hardware objects to handle concurrency, the application power consumption can be further optimized by a task-based scheduler for the remaining software part, without the need for operating system support. The key contributions of this work are: a methodology for high-level hardware/software partitioning that allows the designer to use the same code for both hardware and software models for simulation, providing nevertheless preliminary estimations for timing and power consumption; and a task-based scheduling algorithm that does not require operating system support. The methodology has been applied to the co-exploration of an industrial case study: an MPEG4 VGA real-time encoder

    Unified component integration flow for multi-processor SoC design and validation

    No full text
    Most system-on-chip (SoC) design methodologies promote the reuse of pre-designed (hardware, software, and functional) components. However, as these components are heterogeneous, their integration requires complex interface sub-systems. These sub-systems can also be constructed by assembling pre-designed basic interface components. Hence, SoC design and validation involves component composition techniques to create hardware, software, and functional interface sub-systems by assembling basic interface components. We propose a unified methodology for automatic component integration that allows designers to reuse pre-designed components effectively. We also present ROSES, a design flow that uses this methodology to generate hardware, software, and functional interface sub-systems automatically starting from a system-level architectural model

    Projeto unificado de componentes em hardware e software para sistemas embarcados

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Ciência da Computação, Florianópolis, 2013.O crescente aumento na complexidade dos sistemas embarcados está ocasionando uma migração para técnicas de projeto em níveis mais altos de abstração, o que tem levado a uma convergência entre as metodologias de desenvolvimento de hardware e software. Este trabalho tem como objetivo principal contribuir nesse cenário propondo uma estratégia de desenvolvimento unificada que possibilita a implementação de componentes em hardware e software a partir de uma única descrição na linguagem C++. As técnicas propostas se baseiam em conceitos de programação orientada a objetos (do inglês Object-oriented Programming - OOP) e programação orientada a aspectos (do inglês Aspect-oriented Programming - AOP) para guiar uma estratégia de engenharia de domínio que facilita a clara separação entre a estrutura e comportamento-base de um componente das características que são específicas de implementações em hardware ou software.Certos aspectos de um componente, como, por exemplo, alocação de recursos e a interface de comunicação, são modelados de maneiras distintas dependendo da implementação-alvo (hardware ou software). Este trabalho mostra como tais aspectos podem ser fatorados e encapsulados em programas de aspecto que são aplicados às descrições iniciais apenas quando o particionamento final entre hardware e software é definido. Os mecanismos de aplicação de aspectos são definidos via metaprogramação estática utilizando os templates do C++. Dessa forma, a extração de implementações em hardware ou software a partir de uma implementação unificada em C++ é direta e se dá através de transformações no nível da linguagem suportadas por uma grande gama de compiladores e ferramentas de síntese de alto-nível (do inglês High-level Synthesis - HLS). Para avaliar a abordagem proposta, foi desenvolvida uma plataforma flexível para implementação de System-on-Chips (SoCs) em dispositivos lógico programáveis. A infraestrutura de hardware/software desenvolvida utiliza uma arquitetura baseadas em Network-on-Chips (NoCs) para prover um mecanismo de comunicação transparente entre hardware e software. A avaliação dos mecanismos propostos foi feita através da implementação de um SoC para aplicações PABX. Os resultados mostraram que a estratégia proposta resulta em componentes flexíveis e reusáveis com uma eficiência muito próxima a de componentes implementados especificamente para software ou hardware.Abstract : The increasing complexity of current embedded systems is pushing their design to higher levels of abstraction, leading to a convergence between hardware and software design methodologies. In this work we aim at narrowing the gap between hardware and software design by introducing a strategy that handles both domains in a unified fashion. We leverage on Aspect-oriented Programming (AOP) and Object-oriented Programming (OOP) techniques in order to provide unified C++ descriptions of embedded system components. Such unified descriptions can be obtained through a careful design process focused on isolating aspects that are specific of hardware and software scenarios. Aspects that differ significantly in each domain, such as resource allocation and communication interface, were isolated in aspect programs that are applied to the unified descriptions before they are compiled to software binaries or synthesized to dedicated hardware using High-level Synthesis (HLS) tools. Furthermore, we propose a flexible FPGA-based SoC platform for the deployment of SoCs in a HLS-capable environment. The proposed hardware/software infrastructure relies on a Network-on-Chip-based architecture to provide transparent communication mechanisms for hardware and software components. The proposed unified design approach and its transparent communication mechanisms are evaluated through the implementation of a SoC for digital PABX systems. The results show that our strategy leads to reusable and flexible components at the cost of an acceptable overhead when compared to software-only C/C++ and hardware-only C++ implementations
    corecore