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Abstract. This work introduces an application mapping methodology and case
study for multi-processor on-chip architectures. Starting from the description of
an application in standard sequential code (e.g. in C), first the application is pro-
filed, parallelized when possible, then its components are moved to hardware im-
plementation when necessary to satisfy performance and power constraints. After
mapping, with the use of hardware objects to handle concurrency, the application
power consumption can be further optimized by a task-based scheduler for the
remaining software part, without the need for operating system support. The key
contributions of this work are: a methodology for high-level hardware/software
partitioning that allows the designer to use the same code for both hardware and
software models for simulation, providing nevertheless preliminary estimations
for timing and power consumption; and a task-based scheduling algorithm that
does not require operating system support. The methodology has been applied to
the co-exploration of an industrial case study: an MPEG4 VGA real-time encoder.

1 Introduction

Technological advances have made multiprocessor implementations of embedded sys-
tems a viable alternative to traditional single-processor and pure-hardware designs.
Such multiprocessor designs offer high levels of performance, flexibility and, at the
same time, promise low-cost and power-efficient implementations. One of the most
promising approaches to design such systems is the Multiprocessor System-on-a-Chip
(MPSoC) paradigm. A typical MPSoC system consists of a number of processing ele-
ments (PEs), which can be programmable processors or fixed application-specific co-
processors, and storage elements (SEs) connected to PEs via an on-chip communication
architecture. As a result, MPSoC architectures represent heterogeneous systems that of-
fer flexible parallel processing resources for implementation of bandwidth-demanding
multimedia applications.

However, MPSoC platforms introduce several design challenges associated with
their parallel and heterogeneous architecture. Platform-based design [1] faces the prob-
lem of defining a configurable microarchitecture platform, onto which an application
can be mapped through a well defined parallel programming model, specified via an
application-program interface (API) platform. The mapping of an application to a mi-
croarchitecture platform starts from a complex system specification and goes through a
possible extensive design space exploration phase. In this context, the reuse of a large
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base of existing software to perform the exploration of different possible implemen-
tations constitutes an important concern. The existing software commonly written in
C/C++ language with a single-processor architecture in mind cannot be directly reused
in a multiprocessor environment, especially if it consists of a heterogeneous mix of dif-
ferent software and hardware components. The existing software needs to be adapted
to the parallel capabilities of the architecture. Furthermore, to enable fast and flexi-
ble exploration of the possible application-to-architecture mappings, it is necessary to
automate the hardware-software partitioning of the application. Therefore, there is a
need for a disciplined approach based on a unified parallel modelling paradigm that
would enable a smooth translation of existing sequentially-coded software algorithms
into their parallel models suitable for the design space exploration of MPSoC platforms.

In this work, we show how it is possible to map an application to the MultiFlex [2]
platform, exploiting the features offered by the combined use of the DSOC and the SMP
programming model to provide a novel way of performing initial partitioning and ex-
ploration. The use of the DSOC programming model together with the transaction-level
modeling (TLM) [3] infrastructure allows easy moving of a component from hardware
to software and vice-versa.

Once the application has been partitioned and mapped to the target platform accord-
ing to its performance and power constraints, it is possible to further optimize its power
consumption with the use of a proper Dynamic Power Management System (DPMS).
In this work we extend our previous work [4] with a task-based DPMS scheduler, that
optimizes power consumption without affecting the system’s performance.

The rest of this paper is structured as follows: Section 2 describes current ap-
proaches to the parallel mapping problem; Section 3 outlines the proposed mapping
flow; Section 4 introduces power optimization to the overall architecture; Section 5 de-
scribes an industrial case study to which the proposed methodology was applied; and
finally, Section 6 draws some concluding remarks.

2 Related work

The present paper focuses on a mapping methodology of applications onto MPSoC
platforms in order to identify the best trade-off of power and performance behavior
of the application on a given platform configuration. The next step is task allocation
for dynamic power consumption optimization. Most literature is either focused on pro-
gramming models to solve the mapping of software applications onto specific platforms
or on the scheduling for dynamic power management on multiprocessors. So far, no pa-
per considered yet the entire design flow from a comprehensive perspective.

2.1 Designing MPSoCs

The architectural changes introduced in the emerging MPSoCs have a direct conse-
quence in how software engineers program. This fact has already been acknowledged
by several researchers, who have proposed preliminary solutions. Most of them agree
on the importance of new high-level programmer views of SoC.
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A number of programming models focused on multiprocessor SoCs have been pre-
sented, such as the MESCAL approach [1], which has served as base for further dif-
ferent programming models. Nevertheless, most of them are application or domain
specific.

A more general approach composed of two SoC parallel programming models has
been introduced in [5]. The Distributed System Object Component (DSOC) model and
the Symmetric Multi-Processing (SMP) model are inspired by leading-edge approaches
for large system development, but adapted and constrained for the SoC domain.

Various actor-oriented frameworks are proposed to capture arbitrary Models of
Computation (MoC) for the purpose of system level modeling and tool supported paths
to exploration, implementation and/or verification [6]. The modeling strategy presented
in this paper can be implemented on top of any of these MoC generic frameworks.
We selected SystemC mainly because of the broad user acceptance and commercial
tool support. Complementary to our top-down refinement flow, the Component Based
Design paradigm [7] advocates the bottom-up platform composition from a parameter-
izable IP library, containing off-the-shelf processing elements, communication fabrics
and hardware dependent software layers. This approach is clearly advantageous for the
rapid exploration and implementation of the general purpose portion of the applica-
tion, whereas our approach is focused on application specific architectures executing
the data-processing part.

The highest possible abstraction level for design space exploration and application
mapping is static performance analysis [8, 9]. Other approaches are closer related to
simulation frameworks for top-down exploration and refinement like ARTEMIS [10]
and StepNP [5]. Some recent works present simulation frameworks for mapping appli-
cations based on SystemC [11], and mapping and scheduling of applications on parallel
architectures [12, 13].

2.2 Power optimization

Dynamic Power Management (DPM) is a design methodology that dynamically recon-
figures an electronic system to provide the requested services and performance levels
with a minimum number of active components or a minimum load on such components.

Dynamic Voltage/Frequency Scaling (DVFS) requires processors to adapt their volt-
age and frequency at run-time, according to some control actions. The work in [14]
introduce architectural and implementation issues together with energy saving bounds
concerning DVFS techniques.

A significant amount of research on DVFS scheduling and algorithms have been
proposed on both single and multi-processor systems. DVFS has been implemented
in several contemporary microprocessors as Intel XScale, AMD Mobile K6 Plus and
Transmeta Crusoe [15]. These can be classified as compile-time and run-time poli-
cies [15]. Run-time policies have drawn more attention because of the ability to reduce
energy consumption in response to workload variations. A run-time DVFS policy con-
sists of two elements [15]:

– Scaling points: these are the positions where voltage/frequency scaling occurs.
They can be signaled by timer interrupts, cache misses, etc. The time frame en-
closed by two scaling points is referred as a scaling unit.
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– Scaling criteria: it is the policy that determines the voltage/frequency level of the
next scaling point.

Depending on scaling points, DVFS policies can be classified as interval-based policies
(timer interrupts) [16, 17], micro-architecture-based policies (cache misses and perfor-
mance counters),and task-based policies (task arrivals and completions) [18]. Other
techniques have also been introduced for multiprocessor embedded systems, such as
[19], focusing mostly on scheduling algorithms.

3 Mapping and Exploration Design Flow

The proposed mapping flow allows the designer to co-explore the application design
space including both the architecture model and the application source code, as shown
in Figure 1. This flow is targeted to highly parallel applications, like, for instance, mul-
timedia ones. This flow starts from an executable specification of an application, in a
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Fig. 1. The proposed mapping and exploration flow

language that can be compiled and executed on the target micro-architecture platform.
The mapping phase starts by considering a fully software implementation. The applica-
tion undergoes the following steps:

– Static Profiling: the source code of the application is profiled natively on a worksta-
tion and the total computation effort needed by the application is estimated, given
performance constraints. It is worth noting that this provides the lower bound to the
number of processors, in case of a fully software solution.

– Parallelism Extraction: since the target architecture is an MPSoC, the intrinsic par-
allelism must be extracted from the application to exploit the available system re-
sources. The general problem of automatic parallelization of the code is out of
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the scope of this paper. We consider code that has been already parallelized for
the MultiFlex programming models. This step identifies data dependencies at very
coarse-grain, e.g. image macroblocks for an MPEG4 encoding algorithm.

– Validation: any modification to the reference source code is validated against the
reference data, to avoid losing the original program behavior due to some neglected
dependencies.

– Architecture Modeling: static profiling provides the lower bound in terms of com-
putational resources to run the application and to meet the constraints, hence we
need to model the architecture components considering these basic requirements.
As an example, the static profiling states the minimum number of processors for a
fully software implementation.

– Co-simulation: the architecture model and the software are co-simulated, extracting
both performance and power measures.

– Analysis: simulation results are collected and analyzed to modify both the applica-
tion (e.g. to increase the parallelism) and the architecture model, by modifying the
initial hardware and software partitioning, for example by moving some parts of
the application in hardware or by varying some platform architectural parameters.

The mapping continues to cycle through these steps until the constraints for the appli-
cation are fully met. These steps are detailed in the following.

3.1 Static Profiling

Statically profiling an application consists of determining its computational require-
ments. The idea is to define a lower bound to the resources needed by the application.
In this way, it is possible to configure the micro-architecture platform so that it satisfies
the lower bound. Static profiling can be done natively on any machine that supports a
profiling tool-set, like gprofor iprof. iprof identifies the number of instructions
needed to execute the native code, while gprof provides analysis on the call graph.
Merging the two outputs allows the designer to identify the computational needs of the
application and how those need are distributed in the code. As an example, an MPEG4
encoder developed at STMicroelectronics (described in detail in Section 5), when pro-
filed on a x86 architecture, shows a requirement of 4.081 GIPS (Giga Instructions Per
Second). It is worth noting that this requirement is strictly valid only on the same In-
struction Set Architecture (ISA) on which the application was profiled. More complex
(or simpler) ISAs may run the code using less (or more) instructions.

Considering a micro-architecture platform where the target processor is an ARM9
core running at 200MHz, the bound for a fully software implementation is 21 ARM
CPUs. In fact, ARM9 has at most a CPI (cycles-per-instruction) equal to 1:

c× f × CPI = 21× 200 · 106 × 1
= 4200GIPS

with c and f the number of processors and their frequency respectively. Even suppos-
ing that the micro-architecture platform has enough computational power, a sequential
application cannot run on all the processing elements and therefore the designer needs
to modify it to exploit all possible inherent parallelism.
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3.2 Parallelization

Parallelization requires the identification of sections of code working on independent
sections of the application’s input data. This is not trivial even for applications that
exhibit an “embarrassing” level of parallelism like multimedia audio and video encod-
ing. The kind of parallelization needed for distributing tasks to the processing elements
of an MPSoC is coarse- to medium-grained. Although there is a large amount of re-
search devoted to the automatic parallelization of code [20, 21], coarse-grain paralleliz-
ing compilers are still not widespread in the industry. It is more common to directly
apply programming models to sequential code, leaving the designer to identify data-
dependencies in the code. As an example, a routing application like an IPv4 forwarder,
can be parallelized in such a way that every packet is manipulated by a separate thread.
The use of the MultiFlex SMP approach reduces the effort [2] because it provides a
well-established parallel API, that is entirely similar to multi-threaded programming
when using a traditional UNIX-like operating system, in particular POSIX threading. In
addition, the Concurrency Engine (a hardware SMP accelerator that is part of the Multi-
Flex approach) provides load balancing functionalities, leaving the designer to the only
effort of determining the data dependencies of the target application. The proposed flow

Blocks concurrently 
computed

Fig. 2. Parallelization of a motion estimation algorithm over the macroblocks of a frame

involves the application of the MultiFlex SMP programming model, identifying data de-
pendencies manually. As an example, considering STM’s MPEG4 encoder, independent
data blocks in the motion estimation algorithm are represented by a “knight’s move” on
the chessboard formed by dividing a frame to be encoded in macroblocks (squares of
2x2 blocks of 8x8 pixels), as typical in JPEG and MPEG compression [22]. The par-
allelized application starts a thread for each independent macroblock to be encoded, as
shown in Figure 2.

3.3 Validation

After some parts of the application have been parallelized, the resulting code has to be
verified again in order to prove that the functional requirements of the application still
hold. Applying regression tests to simulated code can be excessively time consuming
and may seriously slow down the design process. To overcome such problem, we ex-
ploit the similarities of the MultiFlex programming model to Pthreads. It is conceivable
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to compile natively the same code that would run on the micro-architecture platform,
given that the API is the same. Using Pthreads it is possible to explore the paralleliza-
tion of the application natively, obtaining the exact same behavior that would take place
on the simulated platform. The only attention to be given is to use only those Pthread’s
concurrency control structures that have been implemented in the Concurrency Engine
(such as semaphores, monitors, conditions). Validating the parallel design implies en-
forcing proper synchronization through the use of those structures avoiding any sort of
deadlock or race condition. The time saving introduced by this solution is conspicuous.
As an example, a simulation run over 30 frames of the MPEG4 encoder takes about
1s natively, while it requires minutes (or even hours, depending on the accuracy level)
when it is executed, on the same workstation, with an instruction-set simulator (ISS).

3.4 Simulation

Once the first run of mapping has been applied, the architecture model and the software
can be co-simulated. Co-simulation is performed using a transaction-level simulator (in
our case, StepNP [5]), first using timed functional models. The first run of simulation
provides data concerning the actual performance of the system, giving bounds to de-
lay and energy consumption. The results of the simulation provide data to proceed in
the exploration of the platform configuration. Examples of these results might be low
processor utilization, which mean that channel latency is excessive and has to be ac-
counted for, as an example using hardware multi-threading [23]. Whenever the applica-
tion meets the required constraints, simulation can be performed at a lower abstraction
level, going into progressive refinements that lead to the actual implementation of the
system.

It is unlikely for a complex, high speed, application, that a full software solution
gives acceptable performance. In this case, some parts of the system may be imple-
mented in hardware, raising the performance but, at the same time, raising the plat-
form’s design cost and lowering its flexibility.

3.5 Hardware-software partitioning

One of the main advantages of the proposed flow is the ease of HW/SW partitioning
through the use of DSOC. In fact DSOC does not make a distinction, from the point of
view of the user, between hardware and software components. The DSOC ORB routes
requests and the MP engine takes care of the marshaling and unmarshaling activities. In
fact, it is possible to create transaction-level models of the application functions using
the exact same code that is used for software models, as shown in Figure 3.

During the static profiling phase, the critical kernels of the applications have been
identified. These are implemented as DSOC objects, defining their function signatures
as appropriate interfaces using SIDL. The SIDL compiler generates skeletons and stubs
needed for communication between DSOC clients and servers. Using a transaction-level
DSOC object adapter, it is possible to connect any DSOC object to a communication
channel. Since the code used by DSOC objects can be either compiled for the simu-
lated processors or natively, it is kept into a separate library compiled in both forms.
Being StepNP (and MP4Free) based on SystemC, which produces native executable
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simulators, the natively-compiled library can be linked directly to the simulator, and ac-
cessed through the stubs. This allows the creation of untimed functional models of each
component modeled as DSOC. Models can be turned into timed functional ones adding
appropriate wait() statements in the SystemC wrapper. It is worth noting how this ap-
proach is not specific to a type of function or hardware component, but it is completely
general: it is sufficient to define a SIDL interface to connect a new object.

Fig. 3. Exploiting DSOC to re-use code for both hardware and software object models

The proposed methodology, however, suffers from a minor limitation. Since the
simulated application and SystemC have different address spaces, it is not possible to
use pointers when passing parameters to hardware components. This means that is is
not possible for a hardware component to access memory via DMA, unless the SystemC
wrapper is sophisticated enough to support address space conversion.

Concerning power consumption, the timed functional models associated with each
DSOC object have no power model. To overcome this limitation, we roughly estimated
the energy consumption per access to the components using SPARK [24]. SPARK is a
behavioral C synthesizer, that produces RT VHDL code. The VHDL code is synthesized
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as well in Synopsys Design Analyzer and estimated with Power Compiler. The result
gives a first estimation of the energy cost per access to the component, as shown in
Figure 3.

Exploiting DSOC, SystemC and TLM, the designer can perform the HW/SW par-
titioning of the system as a matter of turning some switches and running simulations,
greatly simplifying high-level design space exploration. The methodology has been ap-
plied to a set of critical kernels, as outlined in the following.

4 Power-Aware Scheduling on MPSoCs

After the application has been partitioned and mapped to the MPSoC platform, in this
work we also propose a power-aware task-driven scheduling algorithm that, with re-
spect to previous approaches, works at run-time without the need of an operating system
on a multi-processor system. The basic idea is to exploit the MultiFlex [2] hardware-
assisted programming models and task structures to gather the necessary information
for the scaling criteria to assign voltages to processors. The scheduler is included in the
Concurrency Engine as a hardware component, and, if only hardware threads are used,
does not require any operating system support except that needed to access the Con-
currency Engine (CE). The scheduler acts transparently, identifying task events (start,
finish, resource availability) snooping the requests to the CE core. The proposed voltage
scheduler, described in the following, has three key advantages:

1. It is a task-driven scheduler but nevertheless does not require any operating system
support.

2. It is based on very simple, constant time algorithms
3. Its granularity is very coarse, trying to get as close as possible to the optimal value

of one voltage setting per deadline [25]

Due to the structure of most common SMP programming models, i.e. a main thread
forking parallel worker threads, it is easier than in the general case to predict the next
value of the average load of a processor for the next scheduling unit, due to the pre-
dictable behavior of the system. The scheduling points are the fork and join operations
(therefore the classification of the policy as event-driven) defined by a predictive ap-
proach, outlined in the following. We define the main thread the hardware thread ex-
ecuting the main flow of a program, and worker thread every other thread. Tasks are
functions or programs executed by worker threads; jobs are instances of a task, that is,
they are a mapping between a task and a working data set. A fork operation consists
of creating a set of jobs that have to be executed by worker threads. According to the
MultiFlex model, only hardware threads are allowed in the system, and the CE maps
jobs to threads according to its own internal scheduling algorithm.

For each scheduling unit, we determine the best load obtained for each proces-
sor, then use them to compute the predicted value of the next scheduling point. As a
prediction scheme, we use an exponentially smoothed moving average, obtained as a
weighted average of the best loads of the given task. This prediction scheme works well
for applications whose tasks roughly keep the same behavior in time. The assumption
is not a limitation if tasks (i.e. functions) don’t have a timing behavior that is strongly
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dependent on data. Nevertheless, it is possible to use another and perhaps more effec-
tive prediction scheme. The average load of a processor is determined with its internal
instruction counter and is a number less than or equal to one. The idea is to scale the
voltage/frequency of all the processors to keep the average load as close as possible
to one. Load average tends to be lower than one due to wait states caused by channel
latency, contention, etc..

The targets of the MultiFlex approach are multimedia and network applications:
these applications require a huge amount of computational resources, but they are also
quite linear and repetitive. This linearity allows collecting statistics on the current pro-
gram in order to manage future iterations of the same task. According to the program-
ming model, the sequence of fork-join of an application is computed sequentially, and
tasks are forked to one or more threads. The main thread is stalled until all the worker
threads have completed their task. For each task we keep track of the worst execu-
tion time τ as an exponentially smoothed moving average. At every scheduling point,
the voltage/frequency of the processor is set according to the predicted worst load av-
erage for the next set of jobs. Since most DVFS processors can modify their voltage
settings in discrete intervals, we approximate the setting to the voltage/frequency tuple
si = (Vdd, f) such that

f ≥ fmax · lw (1)

where fmax is the maximum frequency value and lw is the predicted average load for
the next scheduling unit. This means that the frequency will be higher or equal to the
frequency needed to complete the task without incurring in performance penalties, ac-
cording to the predicted load. The higher the accuracy of the prediction, the better the
DVFS result. This approach can be extended to perform static voltage scheduling, if the
execution time of each task is known a priori. Finally, we can assume that the schedul-
ing points are far enough in time to reduce the scheduling points in such a way that the
transition cost is not affecting the overall power consumption of the application. This
has been proved valid for an MPEG4 encoder application: fork-join sections generate a
high number (up to 103) of threads, and each task requires a time t >> ttran, making
the overhead negligible.

With the classic SMP approach, scaling voltage of active processors may still incur
in energy waste due to idle processing elements. This may happen in two conditions:

1. The inherent parallelism of the application for a task does not allow forking enough
threads to cover all the processing elements of the target platform. This means that
some processors will be idle during the execution, until the next join.

2. Job distribution is not uniform during a join phase: some jobs finish earlier than
others and leave their processor idle.

To avoid this energy expenditure, the DVFS subsystem of the CE applies DPM method-
ologies, turning off the unused hardware if the conditions arise and this does not affect
the performance of the system due to restart delays.

In the following, for the sake of simplicity, we will consider mono-threaded proces-
sors, i.e. processors that can execute only one thread at a time. However, the approach
still holds for multi-threaded processing elements: a processor executing n threads is
considered as n single-threaded processors that belong to the same voltage cluster and
can be turned off if and only if all n threads are idle.



VLSI-SoC: Research Trends in VLSI and Systems on Chip 187

4.1 The Concurrency Engine Scheduler

To maximize the effectiveness of the approach, the DVFS subsystem of the Concur-
rency Engine has to interface with its multi-processor task scheduler. Our approach is
designed to interface with both static (fixed for all the tasks) and dynamic schedul-
ing approaches, but in this work, we will focus on the standard dynamic scheduler of
the Concurrency Engine. The original implementation of the CE scheduler is a simple
FIFO: every new job is mapped in sequence to available worker threads. Every time a
job is completed, if there are some unmapped jobs, the first in the queue is assigned to
the newly freed resource.

To manage the state of the processors (idle, on, off), the CE monitors the execution
of every job. Whenever a task is about to be completed, some processors become idle,
but turning them off immediately is not necessarily the most effective strategy. In fact,
it is possible that their restart is too slow for the next job to be scheduled without delays,
hindering the system’s global performance. In the original CE implementation, after the
last job is assigned, all the processors are active, finishing their jobs before deadline τ ,
given by the application constraints (e.g. 30 fps for a video encoder). At the time τ all
processors are ready for the next fork, but in the interval between the completion of
their job and τ , they are idle. We define the critical time tc,i of a task i, the minimum
time required to turn off and restart a processor before the beginning of the next task.
Finally, we define the shutdown time td and the start time ts as the time needed to turn
off a processor and to turn on one that was previously off, respectively. The time ts,i

is the time during task i after which it is not possible to turn on a processor before the
next task.

4.2 Scheduling with on/off management

Since the CE possesses all the information needed to schedule tasks over free resources,
we can add the proper signals to switch on and off each processor independently. Each
processor needs a non-null time to change its state (in either direction), so the CE must
check if there is enough time available to shutdown and restart a processor before the
beginning of the next task, considering also the voltage schedule of the current task.

Since the DVFS subsystem predicts the duration of a task τ , the CE has an estima-
tion of the time needed to execute the task. Supposing that the restart time is known as
trs = td + ts, where td is the shutdown time and ts is the start time. Therefore:

tc,i = τ − trs (2)

The improvement when compared to the standard CE scheduler is little: only proces-
sors that can be restarted before τ are turned off, that is processors are stopped only
if the number of remaining jobs is lower than the number of available processors, and
there is no guarantee that there will be any in all tasks. The constraint that all the proces-
sors have to be active at time τ , before starting a new job assignment, can be relaxed
if not all the processors are needed for the next task. This can be discovered by the CE
after a first conservative run where all tasks are supposed to be needing all computa-
tional resources, or can alternatively be defined at design time. In this case, shutdown
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and restart operations can be allowed over task boundaries (i.e. when there are no more
waiting jobs to be mapped), leading to three cases:

– Case 1: τi+1 − τi > trs

In this case it is possible to shutdown a processor in any moment between t0 and
τ0. Considering the example in Figure 4, supposing that the task ending in τ2 needs
only 3 resources, processors P2 and P5 can be shut down and their restart can be
scheduled at tc,2 without incurring in any penalty. This case provides the maximum

Fig. 4. Shutdown over task boundaries with τi+1 − τi > trs

power saving, because it enforces loose constraints on the processors’ shutdown
process.

– Case 2: tstart < τi+1 − τi < trs

In this case, it is only possible to start (and not restart) a processor before the next
deadline

– Case 3: τi+1 − τi < ts
In this case, it is not possible to stop and restart any processor before τ2

Scheduling with task reordering It is also possible to reorder job mapping to proces-
sors so that at the task boundary, the number of required resources knext is less than the
number of processing elements k. In fact, the programming model implies that each job
is independent from the others, as each job is working on a different data set. Roughly,
each job will take the same execution time σ when executed repeatedly using the same
resources. If there are k processing elements and there are n jobs to be completed, there
are always k active jobs until the last job is scheduled, and the total execution time is:

τ ≈ (n mod k)× σ (3)

We call each set of k jobs an iteration of the task. If the number of jobs n is a multiple
of the number of processors, then it is not possible to perform reordering among itera-
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tions. However, if k mod n 6= 0, it is conceivable to reorder the jobs mapping among
iterations, to reduce the fragmentation of idle times at task boundaries.

Given the number of processors k and the number of jobs n, supposing initially, that
n > k, the number of mapped jobs for all the iterations of the task is described by the
regular expression: [k] + λ, where

λ =

{
k if n mod k = 0
n mod k otherwise

As an example consider n = 16, k = 5, λ = 1, in this case [k]+λ = ”5551”. Therefore,
the job distribution over the iterations is the sequence 5-5-5-1, 5 jobs for the first 3
iterations and 1 for the last. Let us rewrite the expression as k′k∗λ, where k′ ∈ [1, k].
Keeping constant k′ + λ, it is possible to rearrange the job assignment to best fit the
scheduling of shutdown and restart operations in the first and the last iteration. We
define the tuple (k′

i, λj) the value of λ and k′ for the ith and jth task, respectively.
As an example, assume that k = 5, then λ = {1, 2, 3, 4, 5}, and k′ = 5; with

these values, all the possible pairs of (k′, λ) and their rearrangements are: (5, 1) ⇒
(3, 3), (5, 2) ⇒ (4, 3), (5, 3) ⇒ (5, 3), (5, 4) ⇒ (5, 4), (5, 5) ⇒ (5, 5).

This arrangement reduces the probability that λj > k′
j+1. In fact, if λj > k′

j+1,
some processor may be idle at the beginning of the first iteration of task j + 1. Con-
sidering the example and two consecutive tasks, there are 9 different (λj , k

′
j+1) tuples,

and only 3 have λj > k′
j+1. In the worst case, 2 processors every 4 join operations

will be in idle state for a time smaller than trs. Removing the hypothesis that n > k,
in the worst case, a processor can be in an idle state for an iteration. This reordering
table is computed at design time and hard-coded in the CE, and depends on the num-
ber of processing elements available in the target SoC. The CE FIFO scheduler uses
the reordering table for scheduling whenever it receives a fork command by the main
thread.

If we consider that, in general, the execution time needed by a task of more than
a few assembly instructions is greater than trs, it is possible to merge the three cases
presented in Section 4.2 into a single algorithm. The algorithm merges the last and
the first iteration of two consecutive tasks, considering two separate deadlines. The
behavior is shown in Figure 5, and the algorithm follows:

1: scheduled active = 0;
2: for all Pj do
3: if Pj completes his job before tc,i then
4: shutdown Pj ;
5: if length(scheduled active) ¡ knext then
6: schedule Pj for restart at ts,i

7: scheduled active++;
8: else
9: schedule Pj for restart at ts,i+1

10: end if
11: else if Pj completes his job in [tc,i, tc,i+1] ∧ ka ≥ knext then
12: shutdown Pj ;
13: schedule Pj for restart at ts,i+1;
14: else
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Fig. 5. Behavior of the generalized DPMS

15: scheduled active++;
16: end if
17: end for
It worth noting that if τi+1 − τi > trs, we obtain Case 1, and if ts < τi+1 − τi < trs,
the result is an improved arrangement of Case 2, that were detailed in Section 4.2.
Theoretically, it is possible that τi + τi+1 is lower than the time required to restart a
processor and only in such case, the scheduler considers also τi+2 and so on. However,
it is reasonable to assume that the time required to execute a task is significantly larger
than the time needed to restart a processor, and therefore only two deadlines have to
be considered when scheduling shutdowns and restarts. In fact, considering as an ex-
ample an MPEG4 algorithm parallelized for the purpose, each task requires on average
7ms while an ARM10 processor running at 200MHz requires ∼ 10µsto awake from
shutdown mode.

The introduced algorithms have linear complexity in the number of computational
resources, making them viable for a fast hardware implementation.

5 Case Study: an MPEG4 encoder

This section describes how the methodology was applied to map an MPEG4 onto the
MultiFlex platform. This platform is constituted of a variable number of ARM proces-
sors with a variable number of hardware threads, a two-level cache structure and the
STBus interconnection network [12].

The application, specified in C, has been initially profiled statically, using gprof and
iprof (GNU open source tools) on a Linux machine. Profiling defined a lower bound
on the number of processors needed for execution: the computing power needed by the
applications amounts to 4.08 GIPS. A full software solution would require a minimum
of 21 ARM CPUs running at 200MHz (each one providing at most 200MIPS). Table
2 shows the results for the 9 functions that take most of the execution time during
the encoding of a frame. These functions represent only a very small portion of the
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application code (approximately 6% of 8086 lines of code) but they cover 82.81% of
all computational resources needed for execution.

Table 1. Static profiling results of the MPEG4 application on Linux

Function Execution Time [%] Lines of Code Fraction of source [%]

BSAD 27.98 90 1.11
BQ 19.17 100 1.21
BDCT 10.36 80 1.11
BZIGZAG 6.22 5 0.06
BIDCT 5.70 110 1.2
BADD 4.66 15 0.18
BDIFF 3.63 17 0.21
BQI 2.59 37 0.45
BSUM 2.59 10 0.12

TOTAL 82.81 465 5.65

As a first design choice, these blocks were selected for a possible hardware imple-
mentation in a coprocessor or MPEG4 accelerator: these functions are present in all
versions of the MPEG algorithm [22], and moving them to hardware blocks does not
hinder the overall flexibility of the system. These blocks correspond to 83% of all com-
putation time but less than 6% of all the application lines of code. These functions were
modeled as DSOC servers, with the application software accessing either the hardware
or software versions of the models.

The remaining 17% of the application computation is executed as software. The
profiling of the distributed application shows that 800 MIPS are required to run the
application on the ARM processors. The data access bandwidth of these processors is
1.7 GB/s.

Concerning the hw/sw partitioning of the application, we applied DSOC program-
ming model allowing to easily switching from software to hardware an vice-versa, us-
ing timed functional models. The code was compiled and executed on StepNP in an
Instruction Set Simulator (ISS) when simulated as software and it was instrumented for
timing analysis, compiled natively, and executed in SystemC space when simulated as
hardware.

Adding power estimation required to build models for the hardware components.
To simplify the modeling, we used SPARK [24] and synthesized RTL directly from the
source code, and we used Synopsys Power Compiler to derive a power model based
on the access to the devices using STM technology libraries at 0.18µm, as shown in
Table 2. The use of SPARK provides good results since the MPEG4 high-computation
kernels are very simple functions.

Switching progressively each kernel to hardware, starting from a full-software so-
lution and from the most computationally-intensive kernel, brings to the results shown
in Figure 6. It is remarkable how turning BDCT into hardware constitutes a significant
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Table 2. SPARK results for the MPEG4 critical kernels

Function Cell Pow. [µW ] Interconnect Pow. [µW ] Total [µW ] Leakage [µW ]

BSAD 17,028 16,063 33,091 20,494
BQ 6,426 1,572 7,999 5,903
BDCT 0,156 0,009 0,165 0,060
BZIGZAG 5,133 1,716 6,850 4,837
BIDCT 23,179 14,037 37,216 24,761
BADD 16,069 5,247 21,316 15,170
BDIFF 38,160 14,114 52,274 29,481
BQI 4,308 1,430 5,739 7,057
BSUM 0,329 0,781 1,110 3,035

energy saving, while it does not have the same effect on performance. Only turning both
BDCT and IDCT into hardware has the effect of raising the performance. This means
that the DCT is one of the major bottlenecks of the system, and therefore justifying
the hardware design choice. The frame rate increases as more components are turned
to hardware, but this is not sufficient to reach the 30 frames per second constraint, and
more optimizations have to be done in terms of parallelism exploitation.

To exploit the MPSoC architecture, the MPEG4 application has then been split into
parallel sections working on independent data. This phase has been optimized manually
for the target MPEG4 application. The inner loops were parallelized using fork-join
constructs. Data dependencies were carefully analyzed and verified after parallelization.

The architecture has been explored with the proposed flow, and the graph of Fig-
ure 7 summarizes the overall performance results, expressed in frames per second (fps)
achieved, for a range of architecture parameters. These include the number of proces-
sors (2 to 5) and the number of threads per processor (2 to 8). The upper curve represents
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the theoretical upper bound for a perfect parallelization (i.e. results for a single proces-
sor accessing local memory, and then simply multiplied by the number of processors).
This theoretical result does not include any inter-processor communication code and
assumes zero bus latency. The best result makes use of 5 processors and 8 hardware
threads per processor. In this case, 28.5 fps is achieved, or 86% of the theoretical best
result of 33 fps. The system was simulated with and increasing number of processors,
after parallelization, showing a result close to the theoretical upper bound when using a
no-wait-state channel and a result very close to the latter when using STBus.

Fig. 7. Performance of the MPEG4 application with different configurations

5.1 Power optimization

Application mapping results are very effective for the given platform, as the overall
average load for each processor is roughly 85%. Therefore, we cannot expect large
savings in power consumption, because the available resource usage is only 15% away
from maximum usage. Nevertheless, it is still possible to gain a 10% power saving
applying the methodologies outlined in this work. For less efficient mappings, these
savings might be even larger.

The DVFS scheduling algorithm was tested on the platform and the resulting voltage
schedule is shown in Figure 8. The algorithm managed to increase the average load per
processor from 85% to 96%, and after the first three frames (during which the MPEG4
pipeline was filling up) the voltage stabilizes to the best feasible value without affecting
the algorithm performance, maintaining the average load to its best value.

Concerning the processor state management, the results are shown in Figure 9: the
number of cycles spent by the processors in idle state (but fully powered) is reduced by
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Fig. 8. Voltage scheduling performed by the algorithm and energy results

Fig. 9. Average cycles in different states of the processors
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80%, and processors spend more time in low-power mode (the Off state in the figure).
The remainder number of idle cycles is spent while switching from one state to the
other.

Due to the high efficiency of the mapping an the state swticthing cost for the arm
processor, the overall energy saving is roughly 10%, which is inline with the increase
in average load per processor.

6 Concluding Remarks

This paper presented a mapping methodology for applications on the MultiFlex plat-
form. In addition, this work presents a fast partitioning exploration scheme that takes
advantage of the DSOC programming model. These methodologies have been applied
to a multimedia case study: an industrial MPEG4 encoder, showing the validity of the
approach. Future works include the integration of the methodology with automatic ex-
ploration algorithms and automatic parallelization of the application code. Concerning
power consumption, this work also introduces a novel low-power voltage scheduler
and a dynamic power management system for the MultiFlex system. This DPMS has
three key advantages: it is task-driven without needing any operating system support,
its algorithms are linear in the number of computational resources, and the scheduling
granularity is very coarse compared to the target application structure. Future work will
add multiple sleep states for the processor cores (with different wake-up times) and
compare scheduling results with optimal values.
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