102 research outputs found

    A topos for algebraic quantum theory

    Get PDF
    The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr's idea that the empirical content of quantum physics is accessible only through classical physics, we show how a C*-algebra of observables A induces a topos T(A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum S(A) in T(A), which in our approach plays the role of a quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on S(A), and self-adjoint elements of A define continuous functions (more precisely, locale maps) from S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical Physic

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    Terminating Non-Disjoint Combined Unification

    Get PDF
    International audienceThe equational unification problem, where the underlying equational theory may be given as the union of component equational theories, appears often in practice in many fields such as automated reasoning, logic programming, declarative programming, and the formal analysis of security protocols. In this paper, we investigate the unification problem in the non-disjoint union of equational theories via the combination of hierarchical unification procedures. In this context, a unification algorithm known for a base theory is extended with some additional inference rules to take into account the rest of the theory. We present a simple form of hierarchical unification procedure. The approach is particularly well-suited for any theory where a unification procedure can be obtained in a syntactic way using transformation rules to process the axioms of the theory. Hierarchical unification procedures are exemplified with various theories used in protocol analysis. Next, we look at modularity methods for combining theories already using a hierarchical approach. In addition, we consider a new complexity measure that allows us to obtain terminating (combined) hierarchical unification procedures

    Non-disjoint Combined Unification and Closure by Equational Paramodulation (Extended Version)

    Get PDF
    Short version published in the Proceedings of FroCoS 2021Closure properties such as forward closure and closure via paramodulation have proven to be very useful in equational logic, especially for the formal analysis of security protocols. In this paper, we consider the non-disjoint unification problem in conjunction with these closure properties. Given a base theory E, we consider classes of theory extensions of E admitting a unification algorithm built in a hierarchical way. In this context, a hierarchical unification procedure is obtained by extending an E-unification algorithm with some additional inference rules to take into account the rest of the theory. We look at hierarchical unification procedures by investigating an appropriate notion of E-constructed theory, defined in terms of E-paramodulation. We show that any E-constructed theory with a finite closure by E-paramodulation admits a terminating hierarchical unification procedure. We present modularity results for the unification problem modulo the union of E-constructed theories sharing only symbols in E. Finally, we also give sufficient conditions for obtaining terminating (combined) hierarchical unification procedures in the case of regular and collapse-free E-constructed theories
    • 

    corecore