3,698 research outputs found

    Quantum Electrical Dipole in Triangular Systems: a Model for Spontaneous Polarity in Metal Clusters

    Full text link
    Triangular symmetric molecules with mirror symmetry perpendicular to the 3-fold axis are forbidden to have a fixed electrical dipole moment. However, if the ground state is orbitally degenerate and lacks inversion symmetry, then a ``quantum'' dipole moment does exist. The system of 3 electrons in D_3h symmetry is our example. This system is realized in triatomic molecules like Na_3. Unlike the fixed dipole of a molecule like water, the quantum moment does not point in a fixed direction, but lies in the plane of the molecule and takes quantized values +/- mu_0 along any direction of measurement in the plane. An electric field F in the plane leads to a linear Stark splitting +/- mu_0 F}. We introduce a toy model to study the effect of Jahn-Teller distortions on the quantum dipole moment. We find that the quantum dipole property survives when the dynamic Jahn-Teller effect is included, if the distortion of the molecule is small. Linear Stark splittings are suppressed in low fields by molecular rotation, just as the linear Stark shift of water is suppressed, but will be revealed in moderately large applied fields and low temperatures. Coulomb correlations also give a partial suppression.Comment: 10 pages with 7 figures included; thoroughly revised with a new coauthor; final minor change

    Projector-Based Augmentation

    Get PDF
    Projector-based augmentation approaches hold the potential of combining the advantages of well-establishes spatial virtual reality and spatial augmented reality. Immersive, semi-immersive and augmented visualizations can be realized in everyday environments – without the need for special projection screens and dedicated display configurations. Limitations of mobile devices, such as low resolution and small field of view, focus constrains, and ergonomic issues can be overcome in many cases by the utilization of projection technology. Thus, applications that do not require mobility can benefit from efficient spatial augmentations. Examples range from edutainment in museums (such as storytelling projections onto natural stone walls in historical buildings) to architectural visualizations (such as augmentations of complex illumination simulations or modified surface materials in real building structures). This chapter describes projector-camera methods and multi-projector techniques that aim at correcting geometric aberrations, compensating local and global radiometric effects, and improving focus properties of images projected onto everyday surfaces

    Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms

    Full text link
    Advancing the size and complexity of neural network models leads to an ever increasing demand for computational resources for their simulation. Neuromorphic devices offer a number of advantages over conventional computing architectures, such as high emulation speed or low power consumption, but this usually comes at the price of reduced configurability and precision. In this article, we investigate the consequences of several such factors that are common to neuromorphic devices, more specifically limited hardware resources, limited parameter configurability and parameter variations. Our final aim is to provide an array of methods for coping with such inevitable distortion mechanisms. As a platform for testing our proposed strategies, we use an executable system specification (ESS) of the BrainScaleS neuromorphic system, which has been designed as a universal emulation back-end for neuroscientific modeling. We address the most essential limitations of this device in detail and study their effects on three prototypical benchmark network models within a well-defined, systematic workflow. For each network model, we start by defining quantifiable functionality measures by which we then assess the effects of typical hardware-specific distortion mechanisms, both in idealized software simulations and on the ESS. For those effects that cause unacceptable deviations from the original network dynamics, we suggest generic compensation mechanisms and demonstrate their effectiveness. Both the suggested workflow and the investigated compensation mechanisms are largely back-end independent and do not require additional hardware configurability beyond the one required to emulate the benchmark networks in the first place. We hereby provide a generic methodological environment for configurable neuromorphic devices that are targeted at emulating large-scale, functional neural networks

    Hund's rule Magnetism in C60 ions?

    Full text link
    We investigate the occurrence of Hund's rule magnetism in C60(n+-) molecular ions, by computing the ground-state spin for all charge states n from -3 to +5. The two competing interactions, electron-vibration (e-v, including Jahn Teller, favoring low spin) and electron-electron (e-e, including Hund-rule exchange, favoring high spin), are accounted for based on previously computed ab-initio coupling parameters. Treating the ion coordinates as classical, we first calculate and classify the static Jahn-Teller distorted states for all n, inclusive of both e-v and e-e effects. We then correct the adiabatic result by including the zero-point energy lowering associated with softening of vibrations at the adiabatic Jahn-Teller minima. Our overall result is that while, like in previous investigations, low-spin states prevail in negative ions, Hund's rule high spin dominates all positive C60(n+) ions. This suggests also that Hund-rule magnetism could arise in fullerene cation-based solid state compounds, particularly those involving C60(2+).Comment: 12 pages, 2 figures, epj styl

    Structure determination of PF3 adsorption on Cu(100) using X-ray standing waves

    Get PDF
    The local structure of the Cu(100)c(4x2)-PF3 adsorption phase has been investigated through the use of normal-incidence X-ray standing waves (NIXSW), monitored by P 1s and F 1s photoemission, together with P K-edge near-edge X-ray absorption fine structure (NEXAFS). NEXAFS shows the molecule to be oriented with its C3v symmetry axis essentially perpendicular to the surface, while the P NIXSW data show the molecule to be adsorbed in atop sites 2.37±0.04 Å above the surface, this distance corresponding to the Cu-P nearest-neighbour distance in the absence of any surface relaxation. F NIXSW indicates a surprisingly small height difference of the P and F atoms above the surface 0.44±0.06 Å, compared with the value expected for an undistorted gas-phase geometry of 0.77 Å, implying significant increases in the F-P-F bond angles. In addition, however, the F NIXSW data indicate that the molecules have a well-defined azimuthal orientation with a molecular mirror plane aligned in a substrate mirror plane, and with a small (5-10°) tilt of the molecule in this plane such that the two symmetrically-equivalent F atoms in each molecule are tilted down towards the surface

    Correcting for optical aberrations using multilayer displays

    Get PDF
    Optical aberrations of the human eye are currently corrected using eyeglasses, contact lenses, or surgery. We describe a fourth option: modifying the composition of displayed content such that the perceived image appears in focus, after passing through an eye with known optical defects. Prior approaches synthesize pre-filtered images by deconvolving the content by the point spread function of the aberrated eye. Such methods have not led to practical applications, due to severely reduced contrast and ringing artifacts. We address these limitations by introducing multilayer pre-filtering, implemented using stacks of semi-transparent, light-emitting layers. By optimizing the layer positions and the partition of spatial frequencies between layers, contrast is improved and ringing artifacts are eliminated. We assess design constraints for multilayer displays; autostereoscopic light field displays are identified as a preferred, thin form factor architecture, allowing synthetic layers to be displaced in response to viewer movement and refractive errors. We assess the benefits of multilayer pre-filtering versus prior light field pre-distortion methods, showing pre-filtering works within the constraints of current display resolutions. We conclude by analyzing benefits and limitations using a prototype multilayer LCD.National Science Foundation (U.S.) (Grant IIS-1116452)Alfred P. Sloan Foundation (Research Fellowship)United States. Defense Advanced Research Projects Agency (Young Faculty Award)Vodafone (Firm) (Wireless Innovation Award
    • …
    corecore