3,989 research outputs found

    Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models

    Full text link
    We present a method for solving the transshipment problem - also known as uncapacitated minimum cost flow - up to a multiplicative error of 1+ε1 + \varepsilon in undirected graphs with non-negative edge weights using a tailored gradient descent algorithm. Using O~()\tilde{O}(\cdot) to hide polylogarithmic factors in nn (the number of nodes in the graph), our gradient descent algorithm takes O~(ε2)\tilde O(\varepsilon^{-2}) iterations, and in each iteration it solves an instance of the transshipment problem up to a multiplicative error of polylogn\operatorname{polylog} n. In particular, this allows us to perform a single iteration by computing a solution on a sparse spanner of logarithmic stretch. Using a randomized rounding scheme, we can further extend the method to finding approximate solutions for the single-source shortest paths (SSSP) problem. As a consequence, we improve upon prior work by obtaining the following results: (1) Broadcast CONGEST model: (1+ε)(1 + \varepsilon)-approximate SSSP using O~((n+D)ε3)\tilde{O}((\sqrt{n} + D)\varepsilon^{-3}) rounds, where D D is the (hop) diameter of the network. (2) Broadcast congested clique model: (1+ε)(1 + \varepsilon)-approximate transshipment and SSSP using O~(ε2)\tilde{O}(\varepsilon^{-2}) rounds. (3) Multipass streaming model: (1+ε)(1 + \varepsilon)-approximate transshipment and SSSP using O~(n)\tilde{O}(n) space and O~(ε2)\tilde{O}(\varepsilon^{-2}) passes. The previously fastest SSSP algorithms for these models leverage sparse hop sets. We bypass the hop set construction; computing a spanner is sufficient with our method. The above bounds assume non-negative edge weights that are polynomially bounded in nn; for general non-negative weights, running times scale with the logarithm of the maximum ratio between non-zero weights.Comment: Accepted to SIAM Journal on Computing. Preliminary version in DISC 2017. Abstract shortened to fit arXiv's limitation to 1920 character

    Replacement Paths via Row Minima of Concise Matrices

    Full text link
    Matrix MM is {\em kk-concise} if the finite entries of each column of MM consist of kk or less intervals of identical numbers. We give an O(n+m)O(n+m)-time algorithm to compute the row minima of any O(1)O(1)-concise n×mn\times m matrix. Our algorithm yields the first O(n+m)O(n+m)-time reductions from the replacement-paths problem on an nn-node mm-edge undirected graph (respectively, directed acyclic graph) to the single-source shortest-paths problem on an O(n)O(n)-node O(m)O(m)-edge undirected graph (respectively, directed acyclic graph). That is, we prove that the replacement-paths problem is no harder than the single-source shortest-paths problem on undirected graphs and directed acyclic graphs. Moreover, our linear-time reductions lead to the first O(n+m)O(n+m)-time algorithms for the replacement-paths problem on the following classes of nn-node mm-edge graphs (1) undirected graphs in the word-RAM model of computation, (2) undirected planar graphs, (3) undirected minor-closed graphs, and (4) directed acyclic graphs.Comment: 23 pages, 1 table, 9 figures, accepted to SIAM Journal on Discrete Mathematic

    A Faster Distributed Single-Source Shortest Paths Algorithm

    Full text link
    We devise new algorithms for the single-source shortest paths (SSSP) problem with non-negative edge weights in the CONGEST model of distributed computing. While close-to-optimal solutions, in terms of the number of rounds spent by the algorithm, have recently been developed for computing SSSP approximately, the fastest known exact algorithms are still far away from matching the lower bound of Ω~(n+D) \tilde \Omega (\sqrt{n} + D) rounds by Peleg and Rubinovich [SIAM Journal on Computing 2000], where n n is the number of nodes in the network and D D is its diameter. The state of the art is Elkin's randomized algorithm [STOC 2017] that performs O~(n2/3D1/3+n5/6) \tilde O(n^{2/3} D^{1/3} + n^{5/6}) rounds. We significantly improve upon this upper bound with our two new randomized algorithms for polynomially bounded integer edge weights, the first performing O~(nD) \tilde O (\sqrt{n D}) rounds and the second performing O~(nD1/4+n3/5+D) \tilde O (\sqrt{n} D^{1/4} + n^{3/5} + D) rounds. Our bounds also compare favorably to the independent result by Ghaffari and Li [STOC 2018]. As side results, we obtain a (1+ϵ) (1 + \epsilon) -approximation O~((nD1/4+D)/ϵ) \tilde O ((\sqrt{n} D^{1/4} + D) / \epsilon) -round algorithm for directed SSSP and a new work/depth trade-off for exact SSSP on directed graphs in the PRAM model.Comment: Presented at the the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2018

    A simpler and more efficient algorithm for the next-to-shortest path problem

    Full text link
    Given an undirected graph G=(V,E)G=(V,E) with positive edge lengths and two vertices ss and tt, the next-to-shortest path problem is to find an stst-path which length is minimum amongst all stst-paths strictly longer than the shortest path length. In this paper we show that the problem can be solved in linear time if the distances from ss and tt to all other vertices are given. Particularly our new algorithm runs in O(VlogV+E)O(|V|\log |V|+|E|) time for general graphs, which improves the previous result of O(V2)O(|V|^2) time for sparse graphs, and takes only linear time for unweighted graphs, planar graphs, and graphs with positive integer edge lengths.Comment: Partial result appeared in COCOA201

    Efficient Construction of Probabilistic Tree Embeddings

    Get PDF
    In this paper we describe an algorithm that embeds a graph metric (V,dG)(V,d_G) on an undirected weighted graph G=(V,E)G=(V,E) into a distribution of tree metrics (T,DT)(T,D_T) such that for every pair u,vVu,v\in V, dG(u,v)dT(u,v)d_G(u,v)\leq d_T(u,v) and ET[dT(u,v)]O(logn)dG(u,v){\bf{E}}_{T}[d_T(u,v)]\leq O(\log n)\cdot d_G(u,v). Such embeddings have proved highly useful in designing fast approximation algorithms, as many hard problems on graphs are easy to solve on tree instances. For a graph with nn vertices and mm edges, our algorithm runs in O(mlogn)O(m\log n) time with high probability, which improves the previous upper bound of O(mlog3n)O(m\log^3 n) shown by Mendel et al.\,in 2009. The key component of our algorithm is a new approximate single-source shortest-path algorithm, which implements the priority queue with a new data structure, the "bucket-tree structure". The algorithm has three properties: it only requires linear time in the number of edges in the input graph; the computed distances have a distance preserving property; and when computing the shortest-paths to the kk-nearest vertices from the source, it only requires to visit these vertices and their edge lists. These properties are essential to guarantee the correctness and the stated time bound. Using this shortest-path algorithm, we show how to generate an intermediate structure, the approximate dominance sequences of the input graph, in O(mlogn)O(m \log n) time, and further propose a simple yet efficient algorithm to converted this sequence to a tree embedding in O(nlogn)O(n\log n) time, both with high probability. Combining the three subroutines gives the stated time bound of the algorithm. Then we show that this efficient construction can facilitate some applications. We proved that FRT trees (the generated tree embedding) are Ramsey partitions with asymptotically tight bound, so the construction of a series of distance oracles can be accelerated

    Decremental Single-Source Shortest Paths on Undirected Graphs in Near-Linear Total Update Time

    Full text link
    In the decremental single-source shortest paths (SSSP) problem we want to maintain the distances between a given source node ss and every other node in an nn-node mm-edge graph GG undergoing edge deletions. While its static counterpart can be solved in near-linear time, this decremental problem is much more challenging even in the undirected unweighted case. In this case, the classic O(mn)O(mn) total update time of Even and Shiloach [JACM 1981] has been the fastest known algorithm for three decades. At the cost of a (1+ϵ)(1+\epsilon)-approximation factor, the running time was recently improved to n2+o(1)n^{2+o(1)} by Bernstein and Roditty [SODA 2011]. In this paper, we bring the running time down to near-linear: We give a (1+ϵ)(1+\epsilon)-approximation algorithm with m1+o(1)m^{1+o(1)} expected total update time, thus obtaining near-linear time. Moreover, we obtain m1+o(1)logWm^{1+o(1)} \log W time for the weighted case, where the edge weights are integers from 11 to WW. The only prior work on weighted graphs in o(mn)o(m n) time is the mn0.9+o(1)m n^{0.9 + o(1)}-time algorithm by Henzinger et al. [STOC 2014, ICALP 2015] which works for directed graphs with quasi-polynomial edge weights. The expected running time bound of our algorithm holds against an oblivious adversary. In contrast to the previous results which rely on maintaining a sparse emulator, our algorithm relies on maintaining a so-called sparse (h,ϵ)(h, \epsilon)-hop set introduced by Cohen [JACM 2000] in the PRAM literature. An (h,ϵ)(h, \epsilon)-hop set of a graph G=(V,E)G=(V, E) is a set FF of weighted edges such that the distance between any pair of nodes in GG can be (1+ϵ)(1+\epsilon)-approximated by their hh-hop distance (given by a path containing at most hh edges) on G=(V,EF)G'=(V, E\cup F). Our algorithm can maintain an (no(1),ϵ)(n^{o(1)}, \epsilon)-hop set of near-linear size in near-linear time under edge deletions.Comment: Accepted to Journal of the ACM. A preliminary version of this paper was presented at the 55th IEEE Symposium on Foundations of Computer Science (FOCS 2014). Abstract shortened to respect the arXiv limit of 1920 character

    Shortest Distances as Enumeration Problem

    Full text link
    We investigate the single source shortest distance (SSSD) and all pairs shortest distance (APSD) problems as enumeration problems (on unweighted and integer weighted graphs), meaning that the elements (u,v,d(u,v))(u, v, d(u, v)) -- where uu and vv are vertices with shortest distance d(u,v)d(u, v) -- are produced and listed one by one without repetition. The performance is measured in the RAM model of computation with respect to preprocessing time and delay, i.e., the maximum time that elapses between two consecutive outputs. This point of view reveals that specific types of output (e.g., excluding the non-reachable pairs (u,v,)(u, v, \infty), or excluding the self-distances (u,u,0)(u, u, 0)) and the order of enumeration (e.g., sorted by distance, sorted row-wise with respect to the distance matrix) have a huge impact on the complexity of APSD while they appear to have no effect on SSSD. In particular, we show for APSD that enumeration without output restrictions is possible with delay in the order of the average degree. Excluding non-reachable pairs, or requesting the output to be sorted by distance, increases this delay to the order of the maximum degree. Further, for weighted graphs, a delay in the order of the average degree is also not possible without preprocessing or considering self-distances as output. In contrast, for SSSD we find that a delay in the order of the maximum degree without preprocessing is attainable and unavoidable for any of these requirements.Comment: Updated version adds the study of space complexit
    corecore