32 research outputs found

    Underwater image and video dehazing with pure haze region segmentation

    Get PDF
    © 2017 The Authors Underwater scenes captured by cameras are plagued with poor contrast and a spectral distortion, which are the result of the scattering and absorptive properties of water. In this paper we present a novel dehazing method that improves visibility in images and videos by detecting and segmenting image regions that contain only water. The colour of these regions, which we refer to as pure haze regions, is similar to the haze that is removed during the dehazing process. Moreover, we propose a semantic white balancing approach for illuminant estimation that uses the dominant colour of the water to address the spectral distortion present in underwater scenes. To validate the results of our method and compare them to those obtained with state-of-the-art approaches, we perform extensive subjective evaluation tests using images captured in a variety of water types and underwater videos captured onboard an underwater vehicle

    Computer vision applied to underwater robotics

    Get PDF

    Enhanced DCP filter for Real-World Hazy Scenes

    Get PDF
    Haze is an atmospheric phenomenon that considerably degrades the visibility of out- door scenes. This happens due to atmosphere particles that absorb and disperse the sunshine. This paper introduces a unique single image visibility restoration algorithm that enhances visibility of such corrupted pictures. A unique edge-preserving decomposition-based technique is prepared to estimate transmission map for a haze image. Therefore, haze removal algorithmic rule has been taken from Koschmiedars law that includes a quick replacement-variation approach to dehaze and denoise at the same time. The proposed technique Enhanced DCP Filter (EDCPF) initially estimates a transmission map employing a windows adaptive technique that supported the dark channel. Restoration of foggy images is an important issue for the de-weathering in computer vision. A new method has been introduced for estimating the optical transmission in hazy scenes. Based on this estimation, the scattered light is eliminated to increase scene visibility and recover haze-free scenes

    Hierarchical rank-based veiling light estimation for underwater dehazing

    Full text link

    Visibility recovery on images acquired in attenuating media. Application to underwater, fog, and mammographic imaging

    Get PDF
    136 p.When acquired in attenuating media, digital images of ten suffer from a particularly complex degradation that reduces their visual quality, hindering their suitability for further computational applications, or simply decreasing the visual pleasan tness for the user. In these cases, mathematical image processing reveals it self as an ideal tool to recover some of the information lost during the degradation process. In this dissertation,we deal with three of such practical scenarios in which this problematic is specially relevant, namely, underwater image enhancement, fogremoval and mammographic image processing. In the case of digital mammograms,X-ray beams traverse human tissue, and electronic detectorscapture them as they reach the other side. However, the superposition on a bidimensional image of three-dimensional structures produces low contraste dimages in which structures of interest suffer from a diminished visibility, obstructing diagnosis tasks. Regarding fog removal, the loss of contrast is produced by the atmospheric conditions, and white colour takes over the scene uniformly as distance increases, also reducing visibility.For underwater images, there is an added difficulty, since colour is not lost uniformly; instead, red colours decay the fastest, and green and blue colours typically dominate the acquired images. To address all these challenges,in this dissertation we develop new methodologies that rely on: a)physical models of the observed degradation, and b) the calculus of variations.Equipped with this powerful machinery, we design novel theoreticaland computational tools, including image-dependent functional energies that capture the particularities of each degradation model. These energie sare composed of different integral terms that are simultaneous lyminimized by means of efficient numerical schemes, producing a clean,visually-pleasant and use ful output image, with better contrast and increased visibility. In every considered application, we provide comprehensive qualitative (visual) and quantitative experimental results to validateour methods, confirming that the developed techniques out perform other existing approaches in the literature
    corecore