252 research outputs found

    Underwater Object Tracking Using Sonar and USBL Measurements

    Get PDF
    In the scenario where an underwater vehicle tracks an underwater target, reliable estimation of the target position is required. While USBL measurements provide target position measurements at low but regular update rate, multibeam sonar imagery gives high precision measurements but in a limited field of view. This paper describes the development of the tracking filter that fuses USBL and processed sonar image measurements for tracking underwater targets for the purpose of obtaining reliable tracking estimates at steady rate, even in cases when either sonar or USBL measurements are not available or are faulty. The proposed algorithms significantly increase safety in scenarios where underwater vehicle has to maneuver in close vicinity to human diver who emits air bubbles that can deteriorate tracking performance. In addition to the tracking filter development, special attention is devoted to adaptation of the region of interest within the sonar image by using tracking filter covariance transformation for the purpose of improving detection and avoiding false sonar measurements. Developed algorithms are tested on real experimental data obtained in field conditions. Statistical analysis shows superior performance of the proposed filter compared to conventional tracking using pure USBL or sonar measurements

    A new 3-D modelling method to extract subtransect dimensions from underwater videos

    Get PDF
    Underwater video transects have become a common tool for quantitative analysis of the seafloor. However a major difficulty remains in the accurate determination of the area surveyed as underwater navigation can be unreliable and image scaling does not always compensate for distortions due to perspective and topography. Depending on the camera set-up and available instruments, different methods of surface measurement are applied, which make it difficult to compare data obtained by different vehicles. 3-D modelling of the seafloor based on 2-D video data and a reference scale can be used to compute subtransect dimensions. Focussing on the length of the subtransect, the data obtained from 3-D models created with the software PhotoModeler Scanner are compared with those determined from underwater acoustic positioning (ultra short baseline, USBL) and bottom tracking (Doppler velocity log, DVL). 3-D model building and scaling was successfully conducted on all three tested set-ups and the distortion of the reference scales due to substrate roughness was identified as the main source of imprecision. Acoustic positioning was generally inaccurate and bottom tracking unreliable on rough terrain. Subtransect lengths assessed with PhotoModeler were on average 20 % longer than those derived from acoustic positioning due to the higher spatial resolution and the inclusion of slope. On a high relief wall bottom tracking and 3-D modelling yielded similar results. At present, 3-D modelling is the most powerful, albeit the most time-consuming, method for accurate determination of video subtransect dimensions

    Underwater localization using imaging sonars in 3D environments

    Get PDF
    This work proposes a localization method using a mechanically scanned imaging sonar (MSIS), which stands out by its low cost and weight. The proposed method implements a Particle Filter, a Bayesian Estimator, and introduces a measurement model based on sonar simulation theory. To the best of author’s knowledge, there is no similar approach in the literature, as sonar simulation current methods target in syntethic data generation, mostly for object recognition . This stands as the major contribution of the thesis as allows the introduction of the computation of intensity values provided by imaging sonars, while maitaining compability with the already used methods, such as range extraction. Simulations shows the efficiency of the method as well its viability to the utilization of imaging sonar in underwater localization. The new approach make possible, under certain constraints, the extraction of 3D information from a sensor considered, in the literature, as 2D and also in situations where there is no reference at the same horizontal plane of the sensor transducer scanning axis. The localization in complex 3D environment is also an advantage provided by the proposed method.Este trabalho propõe um método de localização utilizando um sonar do tipo MSIS (Mechanically Scanned Imaging Sonar ), o qual se destaca por seu baixo custo e peso. O método implementa um filtro de partículas, um estimador Bayesiano, e introduz um modelo de medição baseado na teoria de simulação de sonares. No conhecimento do autor não há uma abordagem similar na literatura, uma vez que os métodos atuais de simulação de sonar visam a geração de dados sintéticos para o reconhecimento de objetos. Esta é a maior contribuição da tese pois permite a a computação dos valores de intensidade fornecidos pelos sonares do tipo imaging e ao mesmo tempo é compatível com os métodos já utilizados, como extração de distância. Simulações mostram o bom desempenho do método, assim como sua viabilidade para o uso de imaging sonars na localização submarina. A nova abordagem tornou possível, sob certas restrições, a extração de informações 3D de um sensor considerado, na literatura, como somente 2D e também em situações em que não há nehnuma referência no mesmo plano horizontal do eixo de escaneamento do transdutor. A localização em ambientes 3D complexos é também uma vantagem proporcionada pelo método proposto

    Towards autonomous localization and mapping of AUVs: a survey

    Get PDF
    Purpose The main purpose of this paper is to investigate two key elements of localization and mapping of Autonomous Underwater Vehicle (AUV), i.e. to overview various sensors and algorithms used for underwater localization and mapping, and to make suggestions for future research. Design/methodology/approach The authors first review various sensors and algorithms used for AUVs in the terms of basic working principle, characters, their advantages and disadvantages. The statistical analysis is carried out by studying 35 AUV platforms according to the application circumstances of sensors and algorithms. Findings As real-world applications have different requirements and specifications, it is necessary to select the most appropriate one by balancing various factors such as accuracy, cost, size, etc. Although highly accurate localization and mapping in an underwater environment is very difficult, more and more accurate and robust navigation solutions will be achieved with the development of both sensors and algorithms. Research limitations/implications This paper provides an overview of the state of art underwater localisation and mapping algorithms and systems. No experiments are conducted for verification. Practical implications The paper will give readers a clear guideline to find suitable underwater localisation and mapping algorithms and systems for their practical applications in hand. Social implications There is a wide range of audiences who will benefit from reading this comprehensive survey of autonomous localisation and mapping of UAVs. Originality/value The paper will provide useful information and suggestions to research students, engineers and scientists who work in the field of autonomous underwater vehicles

    Underwater acoustic localisation and referencing: an enhanced subsurface positioning method for archaeological data collection of submerged cultural resources

    Get PDF
    Traditional and modern optical methods of maritime archaeological site documentation typically lack absolute spatial information as part of submerged cultural heritage surveys in locations where shore-based satellite positioning technologies are not applicable for use. This is due to the inability to use satellite positioning receivers beneath the water surface as a result of the high attenuation rate of electromagnetic waves in a marine environment. The defence and offshore energy industries solved this problem through the incorporation of acoustic ranging systems used in conjunction with satellite positioning receivers. Underwater acoustic ranging equipment, such as ultra-short baseline (USBL) and long baseline (LBL) systems, are commonly used in geophysical surveys and marine construction projects to provide subsurface positioning information of underwater instrumentation such as towed sonar arrays, remotely-operated vehicles (ROVs), and divers. Satellite positioning and underwater acoustic ranging configurations have been in continuous use for more than three decades, and such equipment systems are readily available throughout the world for commercial and scientific applications. Despite the proven effectiveness and accessibility of these systems, maritime archaeology fieldwork practices have not successfully integrated these systems into established underwater data collection techniques. This thesis was established to determine if traditional and modern optical maritime archaeological data collection techniques are capable of being supplemented by a tandem satellite positioning system and USBL acoustic ranging configuration to provide underwater positioning information in accordance with universally-accepted geophysical surveying spatial and equipment standards, such as those published by the International Hydrographic Organization (IHO), Bureau of Ocean Energy Management (BOEM), Historic England, and others. In the absence of recognised spatial standards within the maritime archaeology community, this thesis relied on geophysical surveying spatial and equipment standards as the research parameters upon which the Underwater Acoustic Localisation and Referencing (UALR) methodology was developed. The UALR methodology presented in this thesis successfully incorporated a GPS/USBL configuration for providing subsurface latitude and longitude coordinates for ground control point positions for traditional and modern optical archaeological data collection techniques. The collected datasets were georeferenced using underwater spatial information gathered by the UALR methodology process, and demonstrated that these methods are capable of achieving spatial accuracy and measurement precision in accordance with geophysical surveying specifications. By adhering to these standards, the UALR methodology is applicable for use by archaeologists in support of geophysical surveying operations throughout the world

    CES-515 Towards Localization and Mapping of Autonomous Underwater Vehicles: A Survey

    Get PDF
    Autonomous Underwater Vehicles (AUVs) have been used for a huge number of tasks ranging from commercial, military and research areas etc, while the fundamental function of a successful AUV is its localization and mapping ability. This report aims to review the relevant elements of localization and mapping for AUVs. First, a brief introduction of the concept and the historical development of AUVs is given; then a relatively detailed description of the sensor system used for AUV navigation is provided. As the main part of the report, a comprehensive investigation of the simultaneous localization and mapping (SLAM) for AUVs are conducted, including its application examples. Finally a brief conclusion is summarized

    Multiple Autonomous Systems in Underwater Mine Countermeasures Mission Using Various Information Fusion as Navigation Aid

    Get PDF
    Autonomous bottom mine neutralization systems have a challenging task of mine reacquisition and navigation in the demanding underwater environment. Even after mine reacquisition, the neutralization payload has to be autonomously deployed near the mine, and before any action the verification (classification) of the existence of a mine has to be determined. The mine intervention vehicle can be an expendable (self-destroyed during the mine neutralization) or a vehicle that deploys the neutralization payload and it is retrieved at the end of the mission. Currently the systems developed by the research community are capable of remotely navigating a mine intervention underwater vehicle in the vicinity of the mine by using remote sonar aided navigation from a master vehicle. However, the task of successfully navigating the vehicle that carries the neutralization payload near the bottom and around the mine remains a challenge due to sea bottom clutter and the target signature interfering with the sonar detection. We seek a solution by introducing navigation via visual processing near the mine location. Using an onboard camera the relative distance to the mine-like object can be estimated. This will improve the overall vehicle navigation and rate of successful payload delivery close to the mine. The paper will present the current navigation system of the mine intervention underwater vehicle and the newly developed visual processing for relative position estimation

    TRIDENT: A Framework for Autonomous Underwater Intervention

    Get PDF
    TRIDENT is a STREP project recently approved by the European Commission whose proposal was submitted to the ICT call 4 of the 7th Framework Program. The project proposes a new methodology for multipurpose underwater intervention tasks. To that end, a cooperative team formed with an Autonomous Surface Craft and an Intervention Autonomous Underwater Vehicle will be used. The proposed methodology splits the mission in two stages mainly devoted to survey and intervention tasks, respectively. The project brings together research skills specific to the marine environments in navigation and mapping for underwater robotics, multi-sensory perception, intelligent control architectures, vehiclemanipulator systems and dexterous manipulation. TRIDENT is a three years project and its start is planned by first months of 2010.This work is partially supported by the European Commission through FP7-ICT2009-248497 projec

    Making AUVs Truly Autonomous

    Get PDF
    corecore