121 research outputs found

    A Parametric Replay-Based Framework for Underwater Acoustic Communication Channel Simulation

    No full text
    International audienceThis paper lays the foundation of an underwater acoustic channel simulation methodology that is halfway between parametric modeling and stochastic replay of at-sea measurements of channel impulse responses. The motivation behind this approach is to extend the scope of use of replay-based methods by allowing some parameterization of the channel properties while complying with some level of realism. Based on a relative entropy minimization between the original channel impulse response and the simulated one, the idea is to deliberately distort the original channel statistics in order to meet some specified constraints

    Underwater acoustic communications and adaptive signal processing

    Get PDF
    This dissertation proposes three new algorithms for underwater acoustic wireless communications. One is a new tail-biting circular MAP decoder for full tail-biting convolution (FTBC) codes for very short data blocks intended for Internet of Underwater Things (IoUT). The proposed algorithm was evaluated by ocean experiments and computer simulations on both Physical (PHY) and Media access control (MAC) layers. The ocean experimental results show that without channel equalization, the full tail-biting convolution (FTBC) codes with short packet lengths not only can perform similarly to zero-tailing convolution (ZTC) codes in terms of bit error rate (BER) in the PHY layer. Computer simulation results show that the FTBC codes outperform the ZTC codes in terms of MAC layer metrics, such as collision rate and bandwidth utilization, in a massive network of battery powered IoUT devices. Second, this dissertation also proposes a new approach to utilizing the underwater acoustic (UWA) wireless communication signals acquired in a real-world experiment as a tool for evaluating new coding and modulation schemes in realistic doubly spread UWA channels. This new approach, called passband data reuse, provides detailed procedures for testing the signals under test (SUT) that change or add error correction coding, change bit to symbol mapping (baseband modulation) schemes from a set of original experimental data --Abstract, page iv

    Data centric trust evaluation and prediction framework for IOT

    Get PDF
    © 2017 ITU. Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas

    REP18 Atlantic: a large scale exercise using unmanned systems

    Get PDF
    We present the REP18 exercise in which were operated heterogeneous unmanned underwater and aerial vehicles. This large scale exercise organized together with the PO Navy and with the participation of key players in the area, served to test the large scale use of unmanned vehicles in real-world operations both in defence and scientific areas. This work showcases how the LSTS Toolchain for Autonomous Systems enables all this.Peer Reviewe

    Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios

    Full text link
    Connectivity is probably the most basic building block of the Internet of Things (IoT) paradigm. Up to know, the two main approaches to provide data access to the \emph{things} have been based either on multi-hop mesh networks using short-range communication technologies in the unlicensed spectrum, or on long-range, legacy cellular technologies, mainly 2G/GSM, operating in the corresponding licensed frequency bands. Recently, these reference models have been challenged by a new type of wireless connectivity, characterized by low-rate, long-range transmission technologies in the unlicensed sub-GHz frequency bands, used to realize access networks with star topology which are referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we introduce this new approach to provide connectivity in the IoT scenario, discussing its advantages over the established paradigms in terms of efficiency, effectiveness, and architectural design, in particular for the typical Smart Cities applications

    Towards Software Based Optical Communication Methods for the Assistance of Docking Autonomous Underwater Vehicles

    Get PDF
    The use of optical communications systems is prevalent in underwater robotics when short-range data transmission is required or preferred. This paper proposes a method of producing and testing an optical communications system for use in the assistance of optical docking for autonomous underwater vehicles (AUVs). It describes how the Simulink modelling environment was used to program and simulate a model of a transmitter, which was then implemented on a microcontroller. The transmitter model implemented on hardware was then used to produce an optical signal, which was sampled, logged and used to design a receiver model in Simulink. For signalling purposes, the experiment used a light-emitting diode (LED) with a driver circuit and photodiode based receiver. This simulated approach using real world data enabled the analysis of the system at every point during the process, allowing for a hardware in the loop style approach to be used in the receiver model design. Consequently, the Simulink Coder was used to produce the receiver model’s equivalent in C++ for later deployment. A benchmark was determined through experimentation to compare within future studies; the system was tested and found to operate effectively at distances between 1 m and 12 m in a controlled in air test environment
    • …
    corecore