10,914 research outputs found

    Visualising Basins of Attraction for the Cross-Entropy and the Squared Error Neural Network Loss Functions

    Get PDF
    Quantification of the stationary points and the associated basins of attraction of neural network loss surfaces is an important step towards a better understanding of neural network loss surfaces at large. This work proposes a novel method to visualise basins of attraction together with the associated stationary points via gradient-based random sampling. The proposed technique is used to perform an empirical study of the loss surfaces generated by two different error metrics: quadratic loss and entropic loss. The empirical observations confirm the theoretical hypothesis regarding the nature of neural network attraction basins. Entropic loss is shown to exhibit stronger gradients and fewer stationary points than quadratic loss, indicating that entropic loss has a more searchable landscape. Quadratic loss is shown to be more resilient to overfitting than entropic loss. Both losses are shown to exhibit local minima, but the number of local minima is shown to decrease with an increase in dimensionality. Thus, the proposed visualisation technique successfully captures the local minima properties exhibited by the neural network loss surfaces, and can be used for the purpose of fitness landscape analysis of neural networks.Comment: Preprint submitted to the Neural Networks journa

    Large-scale Multi-label Text Classification - Revisiting Neural Networks

    Full text link
    Neural networks have recently been proposed for multi-label classification because they are able to capture and model label dependencies in the output layer. In this work, we investigate limitations of BP-MLL, a neural network (NN) architecture that aims at minimizing pairwise ranking error. Instead, we propose to use a comparably simple NN approach with recently proposed learning techniques for large-scale multi-label text classification tasks. In particular, we show that BP-MLL's ranking loss minimization can be efficiently and effectively replaced with the commonly used cross entropy error function, and demonstrate that several advances in neural network training that have been developed in the realm of deep learning can be effectively employed in this setting. Our experimental results show that simple NN models equipped with advanced techniques such as rectified linear units, dropout, and AdaGrad perform as well as or even outperform state-of-the-art approaches on six large-scale textual datasets with diverse characteristics.Comment: 16 pages, 4 figures, submitted to ECML 201

    An optimised deep spiking neural network architecture without gradients

    Get PDF
    We present an end-to-end trainable modular event-driven neural architecture that uses local synaptic and threshold adaptation rules to perform transformations between arbitrary spatio-temporal spike patterns. The architecture represents a highly abstracted model of existing Spiking Neural Network (SNN) architectures. The proposed Optimized Deep Event-driven Spiking neural network Architecture (ODESA) can simultaneously learn hierarchical spatio-temporal features at multiple arbitrary time scales. ODESA performs online learning without the use of error back-propagation or the calculation of gradients. Through the use of simple local adaptive selection thresholds at each node, the network rapidly learns to appropriately allocate its neuronal resources at each layer for any given problem without using a real-valued error measure. These adaptive selection thresholds are the central feature of ODESA, ensuring network stability and remarkable robustness to noise as well as to the selection of initial system parameters. Network activations are inherently sparse due to a hard Winner-Take-All (WTA) constraint at each layer. We evaluate the architecture on existing spatio-temporal datasets, including the spike-encoded IRIS and TIDIGITS datasets, as well as a novel set of tasks based on International Morse Code that we created. These tests demonstrate the hierarchical spatio-temporal learning capabilities of ODESA. Through these tests, we demonstrate ODESA can optimally solve practical and highly challenging hierarchical spatio-temporal learning tasks with the minimum possible number of computing nodes.Comment: 18 pages, 6 figure
    corecore