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ABSTRACT We present an end-to-end trainable modular event-driven neural architecture that uses local
synaptic and threshold adaptation rules to perform transformations between arbitrary spatio-temporal spike
patterns. The architecture represents a highly abstracted model of existing Spiking Neural Network (SNN)
architectures. The proposed Optimized Deep Event-driven Spiking neural network Architecture (ODESA)
can simultaneously learn hierarchical spatio-temporal features at multiple arbitrary time scales. ODESA
performs online learning without the use of error back-propagation or the calculation of gradients. Through
the use of simple local adaptive selection thresholds at each node, the network rapidly learns to appropriately
allocate its neuronal resources at each layer for any given problem without using an error measure. These
adaptive selection thresholds are the central feature of ODESA, ensuring network stability and remarkable
robustness to noise as well as to the selection of initial system parameters. Network activations are inherently
sparse due to a hardWinner-Take-All (WTA) constraint at each layer.We evaluate the architecture on existing
spatio-temporal datasets, including the spike-encoded IRIS, latency-codedMNIST, Oxford Spike pattern and
TIDIGITS datasets, as well as a novel set of tasks based on International Morse Code that we created. These
tests demonstrate the hierarchical spatio-temporal learning capabilities of ODESA. Through these tests,
we demonstrate ODESA can optimally solve practical and highly challenging hierarchical spatio-temporal
learning tasks with the minimum possible number of computing nodes.

INDEX TERMS Local learning, neuromorphic feature extraction, spiking neural networks, spike-timing-
dependent plasticity, supervised learning.

I. INTRODUCTION
Over the last decade, Deep Learning using Artificial Neural
Network (ANN)s has been adapted to almost every com-
putational field. The vast adoption of Deep Learning can
be attributed to the simple error back-propagation algo-
rithm [1] that enabled auto-differentiation for the ANN
models. The error back-propagation algorithm solves the
credit-assignment problem for any arbitrary cascade of lay-
ers, activation functions, and any given loss function, as long
as they are all differentiable. The power of such modularity
gave rise to complex hierarchical models which could adapt
to any domain of data such as numerical, images, audio,
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video, robotics, and natural language. Modular ANNs are
also capable of handling multi-modal data from different
domains. Yet, the error back-propagation rule which under-
pins ANNs does not fit well with our understanding of the
form and function of biological SNNs, which were the orig-
inal inspiration of ANNs. This troubling incongruity is a
major focus of research in computational neuroscience and
has motivated many attempts at adaptation, reconciliation,
and re-interpretation of the computations involved in both
artificial and biological neural networks [2].

There are several reasons why the error back-propagation
algorithm can not plausibly be implemented in biologi-
cal neural networks [3], [4]. First, error back-propagation
requires a numerically precise error measurement for a batch
of data. To date, no evidence for such batch processing or
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numerically precise error measurements has been uncov-
ered in the brain and given our mature understanding of
the behaviour of biological neural networks, such evi-
dence is unlikely to emerge. Second, successful error
back-propagation requires global, precise, and repeated prop-
agation of error measures through all the involved compu-
tational nodes in a network - beginning from the inputs
to the highest layers and back. This has been dubbed the
‘weight transport problem’, as the weights of higher layers
have to be made available to the lower layers for successful
backpropagation of error values [4]. Again, no evidence for
such processes has been, or is likely to be, found. The third
and most crucial pillar of error back-propagation is the dif-
ferentiability requirement for all the constituent components
of a given network. Indeed, it is this very aspect of the
error back-propagation algorithm which makes it difficult to
use on non-differentiable data domains like spatio-temporal
spikes patterns which the brains use as the primary mode of
computation and communication. This leads to the biggest
problem in the use of error back-propagation in computa-
tional neuroscience namely, the credit-assignment problem.

There have been multiple attempts at approximating error
back-propagation and applying gradient descent to SNN
architectures. SpikeProp [5] was among the first works to
derive a supervised learning rule for SNNs from the error
back-propagation algorithm. Tempotron [6] was introduced
in which the error back-propagation was applied by defining
loss functions based on the maximum voltage and the thresh-
old voltage of the output neurons. Chronotron [7] was intro-
duced as an improvement over Tempotron by using a new
distance metric between the predicted and target spike trains.
More recent works applied error back-propagation to SNN
architectures by using different surrogate gradients for the
hard thresholding activation functions of the spiking neurons
[8], [9], [10], [11]. However, they don’t address how biology
can realize the computation of gradients and their access
to the neurons involved in the computation. Furthermore,
we don’t have evidence on how batching of data happens
in biology, and most of the gradient descent approaches rely
on batching the data. Despite the lack of bio-plausibility, the
error back-propagation based approaches have been adopted
in computational neuroscience as useful alternative tools to
discover the required connectivity in SNNs for a given spe-
cific task [12], [13], [14].

Feedback alignment has been used as an alternative to error
back-propagation for SNNs in [15] to solve the ‘weight trans-
port’ problem. Feedback alignment shows that multiplying
errors by random synaptic weights is enough for effective
error back-propagation without requiring a precise symmet-
ric backward connectivity pattern. There have been parallel
investigations of more bio-plausible local learning rules for
SNNs which do not require access to the weights of other
neurons in the network. This set of learning rules for SNNs
can be characterized as synaptic plasticity rules which use
Spike-Timing-Dependent Plasticity (STDP) in some form.
STDP rules have more commonly been used for extracting

features from spike trains in an unsupervised manner. There
have also been probabilistic [16] and reinforced [17] vari-
ants of STDP to learn discriminative features which can
assist classification. STDP rules are also commonly used
along with WTA rules to promote competition among neu-
rons and reduce the redundancy in the learnt features [18].
Paredes-Vallés et.al. [19] used a homeostasis parameter that
controls the excitability of neurons in combination with
STDP and WTA rules to promote stability. Supervised Heb-
bian Learning (SHL) [20] and ReSuMe [21] were one of the
first works to use STDP rules to perform supervised learning
in single layer SNN networks. ReSuMe implements a spiking
version of Widrow-Hoff rule [22] for rate-coded SNNs and
using STDP and anti-STDP processes. Spike Pattern Associ-
ation (SPAN) [23] is another learningmethod that adopted the
Widrow-Hoff rule for spike sequence learning. [24] extend
the ReSuMe to multiple layers and approximate the gradient
descent update step of the intermediate layers to an STDP
process. Taherkhani et.al. [25] proposed another modifica-
tion to the ReSuMe rule to extend it to multi-layer SNNs.

Another set of learning algorithms that gained momen-
tum recently is applying evolutionary methods for SNN
optimization. Some works have been solutions for SNN
network structure optimization [26], [27], [28], [29]
and others have been for synaptic weights optimization [30],
[31], [32]. Apart from these broader themes, there have been
other works that used practical mathematical solutions to
the learning problem. For instance, SpikeTemp [33] used
rank-order based learning for SNNs. Multi-Spike Tempotron
(MST) [34] used a technique called aggregate label learn-
ing that can learn predictive cues or features. MST was
followed up with a computationally simpler version called
Threshold-Driven Plasticity (TDP) [35]. Both MST and TDP
update weights by calculating the gradients with respect to the
threshold of a neuron and finding the optimal threshold for a
desired number of spikes from a neuron. Membrane Potential
Driven Aggregate Learning (MPD-AL) [36] was proposed
as an alternative version of aggregate learning which used
gradients with respect to the membrane potential. The role of
neuromodulators in synaptic learning was explored through
three-factor learning rules in [37], [38], [39], [40], [41].
The key motivation to use three-factor learning rules is to
extend the functionality of STDP beyond unsupervised learn-
ing, which by design, neglects any information regarding
‘‘reward’’, ‘‘punishment,’’ or ‘‘novelty’’ during learning [42].

Alongside the regular SNN architectures, with the recent
popularity of neuromorphic vision sensors [43], multi-
ple event-based neural architectures have been proposed
[44], [45]. Afshar et.al. [46] proposed Feature Extraction
using Adaptive Selection Thresholds (FEAST) as an unsu-
pervised feature extraction algorithm for event-based data
using exponential time surfaces and spiking neuron-like units
which have individual selection thresholds. In the FEAST
algorithm, each feature unit is represented by a weight vector
for all its inputs and a selection threshold that facilitates
equal activation of the features during online learning. In this
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paper, we propose to use these adaptive selection thresholds
for multi-layer supervised learning and propose our method
as a simple solution to the credit assignment problem. Our
proposed method is the first to not require the transport of
weights across neurons in the network or random connections
for error propagation. We achieve all feedback to earlier
layers using precisely timed binary attention signals which
signal ‘‘reward’’ and ‘‘punishment’’ of the recently active
neurons.

II. BACKGROUND AND RELATED WORK
A. TIME SURFACES
Tapson et al. [47] proposed the use of exponentially decaying
kernels for processing event data produced by neuromorphic
vision sensors. We shall use the terminology introduced by
Lagorce et al. [45] and refer to these kernels as time surfaces.
The time surface is the trace of events per each input channel
which is updated only when an event arrives at a channel.
An event from an event-based sensor can be described as:

ei = (xi, yi, ti, pi) (1)

Equation (1) describes an event from a pixel location
(xi, yi) as the coordinates on the sensor, with polarity pi,
arriving at time ti. A similar notation can be used to represent
a spike as an event:

si = (ci, ti) (2)

Equation (2) represents a spike si from channel ci at time ti.
We can use the time surfaces to keep the trace of spikes from
a spiking source.

The exponential time surface St [i] of a channel i at time t
with a time constant of τ can be calculated as follows:

St [i] = P[i] ∗ e
−(t−TS[i])

τ (3)

where P[i] in Equation (3) is the last updated potential of the
channel i and TS[i] holds the timestamp of the last spike to
have occurred at the channel i. If a new spike (i, ti) occurs at
the channel i then the potential of the channel P[i] is updated
according to Equations (4) and (5)

P[i]
new
= P[i]

old
∗ e
−(ti−TS[i])

τ + c (4)

TS[i]
new
= ti (5)

where c is the constant by which the potential is increased for
each new spike at a channel. c is generally set to 1.

This formulation of time surfaces for spikes is simply a
reformulation of the Excitatory Post Synaptic Potential due
to an input spike to a biological neuron as described in the
Steins model [48], [49], which jumps by an amount wk on
the arrival of a spike and decays exponentially thereafter.

1u(t) = wk ∗ ε(t − t
f
k ) (6)

ε(t) = e
−t
τm (7)

A neuron n can then be parameterized by a weight vector
Wn representing the synaptic weights to all the input channels

Nc and a spiking threshold θn. The total contribution to the
membrane value vn of the neuron n by all input spikes arrived
up until a time can be formulated as the dot product of the
normalized time surface of all channels and the normalized
weight vector. The normalization of both the potential and the
weights ensures the membrane value vn is between 0 and 1.
The membrane value vn is calculated according to Equa-
tions (8) and (9).C in Equation (8) represents the time surface
context which is the normalized time surface of all input
channels. The time surface context C represents the recent
activity from all the input channels.

C =
S
‖S‖

(8)

vn = Wn
(1×Nc)

· C
(1×Nc)

(9)

Afshar et al. [46] introduced an algorithm to extract fea-
tures from event-data using layers of such neuronal units in
an unsupervised manner. In addition to the weights which
represent the features, each neuron has a threshold as an
additional parameter. For every input event, the dot product
(vn) of the time surface context (C) and the weight (Wn)
of a neuron is calculated. The dot products of all neurons
are then compared to their respective thresholds. Out of the
neurons with the dot products greater than their respective
thresholds(vn ≥ θn), the neuron with the largest dot product
is considered the winner for the given input event. If none of
the dot products crosses their respective neuron thresholds,
the thresholds of all the neurons are reduced by a pre-defined
fixed value. On the contrary, if a matching neuron is found,
the feature/weight vectorWn is updated with the current event
context C using an exponential moving average, and the
threshold of the neuron is increased by a fixed value. The
thresholds and weights of other neurons are left unchanged.

The adaptation of the selection thresholds promotes home-
ostasis and facilitates equal activation of the feature neu-
rons in response to the data. This Feature Extraction using
Adaptive Selection Thresholds (FEAST) is an online learning
method that clusters the incoming event contexts of all the
events into N clusters where N is the number of neurons used
in a FEAST layer.

Lowering the threshold of a feature neuron makes that neu-
ron more receptive to new event contexts, whereas increasing
the threshold makes a feature neuron more selective. FEAST
treats each incoming event with equal priority as there is no
information regarding the importance of individual events.
This results in the features representing the most commonly
observed spatio-temporal patterns in the input data. However,
learning the most commonly occurring features may not be
ideal for tasks that depend on rarer task-specific features.

B. ABSTRACTION OF SPIKING NEURAL NETWORKS
The space of possible SNN architectures can be character-
ized by the different models of neurons, synapses, learning
rules, and network architectures used in them. In this space,
there is often a trade-off between the biological plausibility
and practical applicability of the models. Network models
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attempting to demonstrate biological plausibility through
detailed phenomenological modelling from the voltage-gated
ion channels to the delays at the neuronal synapses tend to
be limited in their performance and utility in the context of
challenging machine learning tasks. The computational cost
of these models increases with the bio-plausibility of the
model. Different neuronal models have been proposed which
approximate and abstract the details of these complexities
with easy-to-handle mathematical and probabilistic models
[50], [51], [52], [53]. Leaky-Integrate and Fire (LIF) neu-
ron model [49] and specifically the Spike Response Model
(SRM) [54] are among the most popular choices of neuron
models in the SNNs, even though the degree to which they
explain the neuronal dynamics is limited compared to other
models like Hodgkin-Huxley [55] or Izhkevich [52] mod-
els. Their vast adoption can be attributed to their analytical
tractability and computational simplicity compared to other
neuronal models. But even the SNN models which use sim-
pler neuronal models like LIF or Adaptive Leaky-Integrate
and Fire (ALIF) neurons [56] require additional complexities
such as Excitatory-Inhibitory Balance, and the right amount
of lateral excitation and inhibition to instil behaviours like
WTA. These complex processes make it difficult to scale
up the simulations of the multi-layered SNNs and limit the
exploration of broader system-level learning mechanisms of
the SNNs as there are a lot of variables in the system. In the
same way, that time surfaces represent simplified hardware
friendly abstractions of the EPSP, the FEAST network can be
best understood as a highly abstracted, functionally equiva-
lent, modular implementation of a well-balanced excitatory
SNN with inhibitory feedback leading to a winner take all
operation at a single layer. In this way, a FEAST layer rep-
resents a neuron group. Picking only one winner in each
layer of FEAST for any input event is a proxy for hard WTA
motif in a neuron group, without requiring any forms of
inhibition. Simpler and computationally easier abstract SNN
models like FEAST can help us explore more system-level
learning rules in SNNs without having to worry about prob-
lems like achieving EI balance and promoting or removing
oscillations in the networks. Just like Address-Event Rep-
resentations (AER) being used in Neuromorphic hardware
to facilitate the communication in SNNs, we can use novel
abstractions like FEAST to explore the space of local learning
rules in Spiking Neural Architectures. Continuing in this
approach and extending it, the Optimized Deep Event-driven
Spiking neural network Architecture (ODESA) introduced in
this paper, represents a method to locally train hierarchies of
well-balanced EI networks on event-based data in a super-
vised manner. In this way, the abstracted SNNwhich ODESA
represents can be used to rapidly explore a wide range of
multi-layered SNN models for real-world online supervised
learning applications.

III. MATERIALS AND METHODS
The aim of ODESA is to use a multi-layered spiking neural
architecture and train it to map any input spatio-temporal

spike pattern Xtrain to any output spatio-temporal spike pat-
tern Ytrain and to do so entirely using binary signals, and with-
out having access to the weights of other neurons or batching
of input data. The latter restriction not only makes ODESA
a useful framework for studying local learning biological
SNNs but also allows local online training in neuromorphic
hardware implementations of such networks. The ODESA
architecture can contain multiple hidden layers with different
time constants to learn hierarchical spatio-temporal features
simultaneously at different timescales to support an output
layer consisting of classification readout neurons which gen-
erate the desired spike in Ytrain.

A. CLASSIFICATION USING ADAPTIVE SELECTION
THRESHOLDS
The output classification layer in ODESA has k ∗Nc neurons
(k = 1, 2, 3, . . . ) for a classification task with Nc classes.
The output layer is divided into Nc groups, each responsible
for spiking for their respective classes. For any given input
spike to the layer, only one neuron (out of k ∗ Nc neurons)
can spike.

The threshold adaptation in ODESA’s output layer is
driven by the supervisory spike signal Ytrain for a given input
spike stream Xtrain. Considering that ODESA is event-driven,
it is assumed that there exists an input spike it in Xtrain
at time t for every output spike ot in Ytrain. The labelled
input spike it in Xtrain which has an output label spike ot
associated with it, is treated with additional attention. For the
labelled input spike it , if there is no spike from the respective
class neuron group responsible for the current class of the
supervisory spike ot , the thresholds for all the neurons in
the class group are lowered. If there is a spike from any of the
neurons in the class group, the winner neuron’s weights are
updated with the input spike’s event context, and its threshold
is updated. Alternatively, in the absence of a spike from the
correct class group, the thresholds of all the neurons in the
group are reduced. This weight update and threshold increase
in a neuron can be thought of as ‘rewarding a neuron’ for
its correct classification. A decrease in the threshold of a
neuron to make it more receptive can be viewed as ‘punishing
a neuron’ for not being active.

The threshold increase step in ODESA is different from
that proposed inAfshar et al. [46]. Rather than the fixed value
used in the previous work, it is an adaptive value that depends
on the dot product of the context with the weight according
to Equations (15) and (16). The1θn in Equation (15) is never
negative because for anywinner neuron n, vn is always at least
as high as θn to win. This new threshold adaptation ensures
that threshold (θn) of a neuron moves asymptotically towards,
but never reaches 1 as the model gets better at classifica-
tion. This modification speeds up the threshold adaptation
operation, while simultaneously improving the stability of
the system by having a proportional increase in the threshold
based on the membrane value (vn) at the time of winning
an input spike. Equations (10) to (16) show the weight and
threshold adaptation of a winner neuron n if it belongs to the
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correct class group.

C =
S(it )
‖S(it )‖

(10)

vn = Wn · C (11)

1Wn = C −Wn (12)

Wn = Wn + η ∗1Wn (13)

Wn =
Wn

‖Wn‖
(14)

1θn = vn − θn (15)

θn = θn + ηthresh ∗1θn (16)

Equation (17) shows the punishment of neuron group which
has not spiked by lowering the thresholds of the group.
2label represents the thresholds of all the k neurons in the
class group that corresponds to the label of the input spike.
θdrop is the fixed value by which the thresholds are reduced.
Figure 1 shows the geometric representation of the reward
and punishment of the neurons.

2label = 2label − θdrop (17)

FIGURE 1. For a sample input space with 2 dimensions, the neurons
(n1 and n2) can be represented by their unit weight vectors ( Ew1 and Ew2)
and their thresholds (θ1 and θ2). The input time surface context is also
represented as a unit vector Ec . The solid circles represent the original
thresholds and dashed circles around the neurons represent the updated
thresholds. The red and green colours represent different output
classes/labels. (a) If the winner neuron n1 belongs to the same class as
the label of input context Ec , then the weight w1 is moved towards the
context Ec and threshold θ1 is increased proportionally (b) If the neuron
n2 for the corresponding class of an input context Ec does not spike, then
the neuron is punished by dropping its threshold θ2 and making it more
receptive.

The WTA constraint in the ODESA layers ensures that
there can be at most one winner neuron for each input spike
to a layer. This creates competition between the neurons to
capture regions of the input space that precede output labels.
In this way, neurons in each layer attempt to only learn the
spatio-temporal features that are crucial in discriminating one
class from another class ensuring that the neuron groups don’t
learn features that are common between two different classes.

The rewarding and punishing of neurons based on their
activity with respect to the label spike stream is the key
element of learning in ODESA.

B. MULTI-LAYER SUPERVISION THROUGH
SPIKE-TIMING-DEPENDENT
THRESHOLD ADAPTATION
Decaying event kernels, time surfaces, and the EPSPs they
represent are all imperfect as memory units since they can
map a wide range of spike trains onto the same analog value
at a channel, thus losing potentially critical information, espe-
cially when there are multiple spikes per input channel. This
poses a serious problem for real-world tasks which depend on
features that occur at multiple timescales and which generally
contain an arbitrary number of information-carrying spikes
per channel. Furthermore, in most real-world tasks, a shared
collection of low level features, when combined in varying
ways in time and feature-space, maps the input data to the
desired output. Thus, hierarchical layers are often required
to solve complex tasks that require associations at different
feature levels and timescales.

Multiple spiking layers, however, pose a new problem to
learning not present in simple one layer networks such as
FEAST. This is a problem of credit assignment. Because
the thresholding operation in SNNs is non-differentiable,
other works have used various versions of gradient approx-
imation and Back-Propagation Through Time (BPTT),
[8], [9], [10], [11]. In contrast, ODESA solves this prob-
lem without the use of gradients, by using the activity of
the next layer as the supervisory signal for the current
layer.

Each neuron in the hidden layer of an ODESA network
has a trace of its latest activation. Equation (18) describes
the trace 3l

t [n] of a neuron n in layer l at time t . Just like
time surfaces, updates of the trace of a layer (3l) are event-
driven. tn is the time of neuron n’s most recent spike. The
trace 3l

t [n] acts as a measure that indicates the neuron n’s
recent activity at any time t . The trace of a layer3l

t is used to
find the neurons that participated in generating a spike in the
next layer and reward or punish them accordingly. The time
constant of the trace 3l is equal to the time constant of the
neurons in its next layer τl+1, whereas the time constant τl
for neurons in a layer l is used to decay the inputs to layer
l via time surface S l . Thus in general, the time constant of
layer l’s trace τl+1 is not equal to that layer’s time surface
time constant τl . In our experiments, we have used the same
time constant for all the neurons in a layer. When any neuron
nl+1 in the next layer spikes (post-synaptic spike) for an input
spike (pre-synaptic spike) from the current layer l, a local
binary attention signal Al+1[i] is passed to the current layer l
from the next layer l + 1 indicating activity in the next layer.
The current layer l uses the local attention signal to reward
its recently active neurons (whose trace 3l

t [n] ≥ 8) and
punishes its inactive neurons (3l

t [n] < 8) where 8 is the
trace recency threshold. In this work, an arbitrarily chosen
trace recency threshold value of 8 = 0.1 is used throughout.
The reward and punishment of the neurons in this layer are
the same as described in Section III-A.

3l
t [n] = e

(−(t−t
f
n )

τl+1
)

(18)
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FIGURE 2. Multi-layer supervision in ODESA using spike-timing-dependent threshold adaptation. The shaded vertical lines
represent the binary global attention signal generated for each output label spike, and the dotted vertical lines represent the
binary local attention signals sent to each layer from its next layer. The up and down arrows represent the reward and punishment
of the individual neurons. Case 1: The predicted output spike matches the label spike, and the corresponding output neuron is
rewarded. Case 2: The corresponding output neuron for the correct class is punished as it failed to spike in the presence of input
from Layer 2. Case 3: All neurons in Layer 2 are punished as they failed to spike for an input spike from Layer 1 in presence of the
global attention signal. Case 4: The active neuron in Layer 2 is rewarded in presence of the global attention signal. Case 5: The
neurons with trace above the recency threshold are rewarded and the other neurons are punished in the presence of local
attention signal from Layer 2.

This local attention signal driven reward mechanism forces
the neurons in each layer to learn features that best support the
activity in the next layer. The neurons in the next layer in turn
compete to support the activity of neurons in the following
layer and so on. The last hidden layer of the network is
rewarded by the output layer, and the output layer is rewarded
by label spikes which are events that carry the ground truth
labels. The supervision of the output layer can be considered
the same as the supervision applied to the hidden layers but
with a trace that decays instantaneously, i.e., τo+1 → 0.
The instantly decaying trace ensures the rewarding of the
output layer only when it generates a spike precisely at the
time of the actual label spike. The post-synaptic spike-timing-
dependent threshold adaptation described is the key element
to the learning in multi-layered ODESA. This threshold adap-
tation mechanism is an additional dimension to the learning
process apart from the usual synaptic weight adaptation used
in STDP-based SNNs. It helps in regulating the spike activity
and utilises all the neuron resources available by promoting
equal activation of all the hidden neurons involved in gener-
ating an expected output spike. Thus providing the required
behavioural complexity needed to solve the credit assignment
problem over multiple layers.

Since the ODESA network is event-driven, if a hidden
layer l fails to spike for an input spike there will be no spike
generated at the output layer that can be used for training.
Therefore, in addition to the local attention signal Al+1[i],
a Global Attention Signal G[i] is also generated for every
labelled input spike. Every layer is expected to spike for a
labelled input spike such that an output spike can be gener-
ated. Hence, all the neurons in the silent layer l that failed to
spike in presence of the Global Attention Signal and an input
spike from its previous layer are punished. This rule isolates
the layer where the failure to transmit spikes took place and
punishes the neurons in that layer by making them more
receptive. Additionally, the neurons in every layer whichwere
active during the global attention signal are rewarded. In this
way, every layer in a well trained network will generate a
spike whenever an output spike is expected. Figure 2 shows
the spike-timing-dependent threshold adaptation for a sample
network activity. The exponential kernels show the trace of
the spikes at each layer and the dotted lines show the local
attention signals a layer passes to the layer below it when a
spike is generated by one of its neurons. The upward arrows
indicate the neurons that are rewarded and the downward
arrows indicate the neurons that are punished. The red and

VOLUME 10, 2022 97917



Y. Bethi et al.: Optimized Deep Spiking Neural Network Architecture Without Gradients

blue shaded zones indicate the global attention signals gener-
ated when a labelled spike arrives.

FIGURE 3. Overview of the supervision in multi-layered ODESA.

C. OVERVIEW OF LEARNING RULES IN ODESA
Figure 3 shows the operation of a multi-layered ODESA
network. The Global Attention Signal G[i] is a binary event
that indicates the presence of a labelled spike. The first layer
l in the network that stays inactive (Case 3 in Figure 2)
while having an input spike from the layer below it l − 1 is
punished in the presence of the Global Attention Signal. The
Local Attention Signals A1:L[i] are also binary events that
indicate the activation of the next layer to the current layer.
The recently active neurons (3l

t [n] ≥ 8) in the previous layer
are rewarded (weight update and threshold adaptation as in
Equations (13) to (16))) and the inactive ones are punished
(threshold decreased as in Equation (17)). This supervision
is different to traditional back-propagation techniques which
require access to all the higher layers’ activity to find the
gradients for a given layer. ODESA training continues even
when one of the later layers in the network goes silent. This
spike-timing-dependent threshold adaptation equips ODESA
with the ability to learn features simultaneously at all layers
irrespective of the other layers’ states.

D. ADDITIONAL OUTPUT LAYER ADAPTATION
Along with the threshold adaptation described in
Section III-A, additional weight update steps were inves-
tigated to speed up the convergence of learning. The first
addition is the use of negative weight updates for misclas-
sified spikes. If a neuron n in the output layer belonging to a
different class group than the label class group spikes for an
input, the weights of the neuron are updated using a negative
weight update according to Equation (19).

Wn = Wn − η ∗1Wn (19)

The second additional weight update step investigated was
rewarding the closest neuron in the label class group when
there is no winner from this group. The closest neuron is the
neuron with the highest dot product value (v in Equation (9))
among the neurons in the group corresponding to the label.
The weights and threshold of the closest neuron c with the
highest dot product value among the label class group is

FIGURE 4. For a sample input space with 2 dimensions, the neurons
(n1, n2, and n3) can be represented by their unit weight vectors ( Ew1, Ew2
and Ew3) and their thresholds (θ1, θ2 and θ3). The input time surface
context is also represented as a unit vector Ec . The solid circles represent
the original thresholds and dashed circles represent the updated
thresholds. The red and green colours represent different output classes.
The colour of the context vector Ec represents the label. (a) The closest
neuron n2 in the correct class group is pushed towards the current input
context and rewarded with it. (b) The neuron n3 which spiked for the
context Ec of a different class is pushed away from it by applying negative
weight update.

updated according to Equations (20) to (21). This step is
analogous to pulling the thresholds of the neurons in the label
class group down until one of them spikes, and rewarding
the first neuron that spikes. Figure 4 shows the geometric
representation of the two additional adaptations.

Wc = Wc + η ∗1Wc (20)

θc = θc + ηthresh ∗1θc (21)

The adaptation discussed in Section III-A along with the
above two weight update steps together gave the best per-
formance across all the tasks. The advantages in perfor-
mance due to these weight update steps are discussed
in Section V-A

IV. RESULTS
We tested ODESA on different spatio-temporal transfor-
mation and classification tasks. The method was tested
on a random pattern association task where random input
spatio-temporal patterns were mapped to a target output spike
stream. The network can simultaneously learn a hierarchical
representation of the input patterns using an optimal num-
ber of neurons at each layer. Traditional machine learning
datasets can be converted to spiking dataset using a range
of different techniques like rate coding, population encod-
ing, intensity to latency encoding, etc. We used a variety
of encoding techniques to convert popular machine learn-
ing datasets to spike-based datasets and evaluated ODESA
on them. ODESA was tested on the IRIS dataset converted
to precise temporal coded spike patterns using population
coding proposed by Bohte et al. [5]. We also tested it on
the Oxford spike pattern which was used to demonstrate the
capabilities of SuperSpike [11], as well as the latency-coded
MNIST dataset. We then show the capabilities of the archi-
tecture by testing it on more complex problems like decoding
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Morse Code sequences and spoken digit classification using
spikes from a Cochlea model.

FIGURE 5. Evolution of output layer activity for the random pattern
association task. Embedded in the input spike patterns are unique
sequences of symbols made of unique random patterns. The label spikes
denote the desired output spike pattern for the given input spike pattern.
The prediction spikes show the change in the activity of the 4 output
neurons across 5 epochs.

A. RANDOM PATTERN ASSOCIATION TASK
We first tested ODESA on a random pattern association
task. Three random symbols (A, B, and C) were generated
with 8 input channels that had a variable number of spikes
per channel (6-8 spikes per symbol). We picked four target
sequences randomly which are a combination of the con-
stituent symbols (e.g., BBA, ACB, CAC, CCC). A stream
of random combinations of the symbols ( ‘‘. . . .B A A C B
B C. . . ’’ ) with no gap in between is presented to a two-
layered ODESA network. A global attention signal is raised
indicating the class at the last spike of each picked target
sequence if andwhen they occur in the stream. The goal of the
experiment is for the output layer of the ODESA network to
generate spikes precisely at the time of the target label spikes.
The network starts with spiking for every input event and gets
rewarded every time it gets one of the label spikes right. The
rewarded neurons get more specific in their spiking with time,
and the neurons in the hidden layer get more specific in the
features that occur just before the label spikes. Figure 5 shows
the evolution of the output layer’s activity across 1 to 5 epochs
for a given random pattern association task.

B. OXFORD SPIKE PATTERN
We also tested how the ODESA architecture can be adapted
to other types of spike prediction problems such as the Oxford
spike pattern, which was used to showcase the performance
of the SuperSpike algorithm [11] in their supplementary code
repository.1 The Oxford spike dataset consists of an input
spike train, and a target spike train. The input spike train con-
sists of random spikes generated in 200 channels over a period
of 1.89 seconds. The target spike train is an image of a build-
ing that has been converted to a spatio-temporal spike train
over 200 channels and 1.89 seconds. The task is to predict
the precisely timed target spike train based on the random,
but fixed, input spike train. This is very similar to the random
pattern association task in the previous experiment, but with
higher dimensions and without any inherent sub sequences
in the input spike train. It is different from other datasets
we tested ODESA in this work, due to the need to generate
multiple output spikes per input spike. So the ODESA output
layer was slightlymodified to accommodate this requirement.
We removed the hard WTA step in the output layer of the
network and allowedmultiple neurons to spike as long as their
membrane values crossed their respective thresholds. The
threshold adaptation of the output layer remained unchanged,
and whenever a neuron group responsible for an output spike
failed to spike, the thresholds were reduced. Neurons that
correctly predicted the target spikes were rewarded. Also,
as the ODESA architecture in its current form does not have
delays in its synapses, at least one input spike should exist
for every label spike. To facilitate this, we modified the target
by mapping each spike in the output spike train to the nearest
spike in the random input spike train. As the input spike train
was fairly dense, the structure of the overall image did not
change much from this process, as can be seen from the side
by side comparison of target spikes in Figure 6.
Figure 6 shows the prediction from a single layer ODESA

network and a two layer network trained with SuperSpike.
The SuperSpike algorithm [11] uses an error measure that
is a function of temporal difference between the predicted
spike train and the target spike train. However, as ODESA
makes predictions for each input spike, we had to create a
different evaluation metric to monitor the training. For each
input spike, we calculated the Intersection Over Union (IOU)
over the sets of target spikes and predicted spikes. A mean
IOU (between 0 and 1) per input spike was then calculated
per epoch to evaluate the algorithm.With one output layer and
no hidden layers, ODESA could achieve a mean IOU score of
0.80 for the Oxford spike pattern. The number of neurons per
each correct class group (k) was proportional to the number
of spikes in each target class. Though the receptive fields of
neurons in ODESA can accommodate local temporal jitter,
ODESA primarily learns patterns through clustering similar
input patterns together. Therefore, it requires more than one
neuron for each target class in the output layer to solve a
problem like the Oxford spike pattern, as most of the features

1https://github.com/fzenke/pub2018superspike
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at each input spike are uncorrelated and unique. Two-thirds of
the number of unique spikes in each target channel was used
as the k (number of neurons in each class group) value for
that class group in the final network. That was the minimum
number of neurons required in the output layer to predict most
of the output spikes in our experiments. SectionV-B discusses
the performance of ODESA with different network depths on
the Oxford spike pattern.

FIGURE 6. Prediction of Oxford spike pattern using ODESA and the
original SuperSpike algorithm using symmetric feedback.

C. IRIS DATASET
To compare with other supervised learning methods on
SNNs, we followed the same biologically plausible encoding
scheme of traditional machine learning datasets as first pro-
posed in Bohte et al. [5]. The Fisher’s IRIS dataset contains
3 classes with 50 samples each and is known for having lin-
early non-separable classes. Each sample has 4 input features,
and m = 5 gaussian receptive fields per input feature were
used to convert the features into 4×5 = 20 spiking channels.
We used β = 1.5 just like the original work [5] where it was
first used. We added no additional input channels to spike at
intermediate intervals like used in [25]. Each input spiking
channel emits a spike only once in the time between t = 0 and
t = 1 secs per example. A simple 2-layer ODESA network
was used with the hidden layer having time constant of τ1 =
0.6 sec and an output layer with time constant of τ2 = 0.9 sec.
The hidden layer had 10 neurons and the output layer had
1 neuron per class. We evaluated the network by performing
2-fold and 4-fold cross-validation. We compared the results
with other supervised learning algorithms in SNNs and some
non-spiking methods for reference in Table 1. We can see
that ODESA can achieve comparable performance in the task
with significantly fewer neurons and trainable parameters
than other SNN training algorithms.

TABLE 1. Comparison of ODESA network on Fisher’s IRIS Dataset with
other methods.

FIGURE 7. Examples of classes ‘0’,’1’,and ‘5’ of latency coded spikes from
MNIST.

D. LATENCY-CODED MNIST
MNIST [62] consists of 60,000 training images belonging
to 10 classes and 10,000 testing images. Each image is of
size 28 × 28 which makes the input channels equal to 784.
The MNIST images were preprocessed using latency coding
to convert them into a spiking dataset. The brightness value
of each pixel was linearly transformed from 0-255 to 0-1
seconds which was used as the timing of a spike from the
corresponding input channel. All the spikes from pixels that
had a timestamp of less than 0.3 seconds were eliminated
to reduce the number of input spikes. As ODESA expects
a precisely timed label spike, at the end of each example
we generated a labelled spike that denotes the class of the
example. The latency coding ensures that the input time
surface context at the end of the example is similar to the
original MNIST image. Figure 7 shows a few examples of
input spikes generated this way. We have used an ODESA
network with 1 hidden layer (6000 units) and 1 output layer
(k = 10) to train on the latency-coded MNIST dataset to
achieve a test accuracy of 93.23%. The time constants for
each layer τ1 and τ2 was set to 1.0sec each. We can easily
visualise the features of time surface contexts learnt by the
neurons in the hidden layer by simply plotting the heat map
of the weights like shown in Figure 8 (a).

We can see that different neurons have learnt different
intensity regions of the digits in MNIST, as the respective
spikes fall close to each other temporally.We can also approx-
imately estimate the patterns learnt by later layers by multi-
plying the weight matrices of a layer with its previous layer
and so on. For example, in a two layer ODESA network,
the composite weights of 2nd layer can be estimated by a
simple matrix multiplication (Equation (22)). Where W2 is
the weight matrix of the 2nd layer, andW1 is the weight matrix
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of the 1st layer. ni, n1, and n2 represent the number of input
channels, the number of neurons in 1st layer, and the number
of neurons in 2nd layer respectively. It should be noted that
this is only a limited 2D visualisation of the higher dimen-
sional spatio-temporal feature learnt by the output neurons.
Estimating the original time surface patterns which trigger the
neurons is not easily tractable due to the weight normalisation
and the non-linear thresholding operation.

W comp
2

(n2×ni)
= W2

(n2×n1)
· W1
(n1×ni)

(22)

Figure 8(b) shows the composite weights of the output
layer of ODESA network trained on MNIST. Each row in
Figure 8(b) represents the k neurons in each class. The com-
posite weights show that each neuron in an output class group
is learning a different cluster of patterns for the class. Table 2
shows the comparison of the test accuracy with various other
SNN methods. ODESA performs on par with all the STDP-
based methods without requiring an additional classifier at
the end.

FIGURE 8. (a) Weights of 100 neurons randomly picked from hidden
layer. (b) Composite weight visualisation of output neurons by
multiplying the weight matrices of hidden layer and output layer. Each
row represents the weights of neurons (k = 10) in each class group.

TABLE 2. Comparison of accuracy on the test set of MNIST with other
SNN methods.

E. INTERNATIONAL MORSE CODE
The problem with using the IRIS dataset and other
machine learning datasets converted to spiking datasets using

population encoding or latency coding is that each input
channel can only spike once during the entire example. Fur-
thermore, there is no hierarchy in the temporal features to
be learnt. Hence, these datasets only test the spatial feature
learning capabilities of an SNN. Even popular neuromorphic
vision datasets like N-MNIST do not have a hierarchy of
temporal features, i.e., the time of the spike patterns is not
key to the task, which is the classification of the digits such
that the removal of all timing information (by simply binning
all spikes at the input channel) does not result in any loss of
information for the task. Thus, which spiking datasets test
the true temporal learning capabilities of SNNs [73] is still
an open question. Models trained on the datasets like IRIS
only learn one spike per channel, and don’t have to learn a
sequence of different states along the temporal dimension.
Each example is a single spatio-temporal feature with no
more than one spike per channel. Hence, we made a cus-
tom task that can test and show the hierarchical learning
capabilities of ODESA in the temporal dimension. We used
the International Morse Code to encode different letters and
numbers into spikes from two channels: ‘‘dash’’ and ‘‘dot’’.
Each of these channels spikes multiple times for a given
letter, and words would have multiple occurrences of the
constituent letters. This forces the models trained on such a
dataset to learn not only the spatio-temporal features across
the channels at a given time but also learn the sequences of
occurrences of such spatio-temporal features. For example,
to differentiate two numerical sequences like ‘‘0,0,1,0,0’’
and ‘‘0,0,0,1,0’’, the model would have to learn the internal
representation of the constituent numbers ‘‘0’’ and ‘‘1’’ which
translate to ‘‘- - - - -’’, and ‘‘. - - -’’ inMorse code using dots (.)
and dashes (-) as spikes. We generated multiple tasks which
involve complex sequence learning to test the hierarchical
spatio-temporal learning capabilities of ODESA.

The first task withMorse codewas to classify four different
names: ‘‘ANDRE’’, ‘‘GREG’’, ‘‘SAEED’’, ‘‘YESH’’, and
‘‘YING’’ in Morse code. Each letter in each word was con-
verted into a spike stream using the dots and dash encoding of
Morse Code. For example, letter ‘Y’ is encoded as ‘‘- . - -’’ in
Morse code and a spike is generated from the respective input
channel for each dash ‘-’ or dot ‘.’. A time gap was inserted
between each letter to distinguish it from the next letter. At the
last spike of the last letter of each word, a corresponding
output class spike is generated in the output spike train. The
task is to predict the output spike train for the sequence of
input spikes that conveys the different names in the training
set. We used a two-layered ODESA network, one layer to
learn spatio-temporal features at the timescale of the letters,
and the second layer to learn features at the timescale of
words, which is then fed into the output layer to learn the
representations of the exact words in the dataset.

The second task we tested ODESA on was the previously
mentioned sequence of ‘‘0,0,1,0,0’’ and ‘‘0,0,0,1,0’’. Though
the supervisory signal is only provided at the end of the last
‘‘0’’ in each sequence, the model would have to learn some
intermediate representation of ‘‘1’’ to be able to solve the
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task. Along with learning the representation of the symbol
‘‘1’’, the network also has to learn the position of the same
symbol in the sequence. We used a two-layered ODESA
network, one layer to learn the symbols (0 and 1), and the
second layer, which is the output layer, to learn the sequence
of the symbols. The output layer has two neurons for the
two classes. The ODESA network can learn an intermedi-
ate representation of the symbol ‘‘1’’ without relying on an
explicit supervisory signal for symbol ‘‘1’’ due to the local
supervision provided by the next layer. Figure 9 shows the
network activity at each layer after training on both the digit
sequence and name detection tasks.

FIGURE 9. (a) Two-Layer ODESA activity after training to recognize the
five author names ‘‘ANDRE’’, ‘‘GREG’’, ‘‘SAEED’’, ‘‘YESH’’, ‘‘YING’’ in Morse
Code. (b) Two-Layer ODESA activity after training to recognize ‘‘0,0,1,0,0’’
and ‘‘0,0,0,1,0’’ in Morse Code.

The third Morse Code task we tested ODESA on was a
more complex sequence that involved learning sentences in
Morse code. We took Shakespeare’s Sonnet 18 and used the
first four lines as four different sequences to be learnt by the
model. The four sentences were ‘‘shall I compare thee to a
summers day’’, ‘‘thou art more lovely and more temperate’’,
‘‘rough winds do shake the darling buds of may’’, and ‘‘and
summer’s lease hath all too short a date’’. The reason for
selecting a poem for the sequence learning task was that
poems have line endings that rhyme with each other. The last
two letters of line 1 and line 3 are ‘‘ay’’, and the last three
letters of line 2 and line 4 are ‘‘ate’’. This makes sure that
the model cannot just learn the ending letters of each line to
differentiate different lines. A three-layer ODESA network
was trained for the task such that the first layer can learn the
letters, the second layer can learn the words, and the third
layer can learn the sentences. The time constant for the first
layer was at the scale of the letters (5 timesteps), the second
layer’s time constant was at the scale of words (50 timesteps),
and the output layer has a time constant appropriate for the
scale of the sentences (200 timesteps). Figure 10 shows the
evolution of the activity at each layer at different epochs of
the training. It shows how the specificity and the precise
prediction of labels at the output layer with more training.
Figure 11 shows the final activity of the network for a single
example after the training.

F. TIDIGITS
Next, we tested ODESA on the TIDIGITS corpus [74] for an
isolated spoken digits recognition task. The TIDIGITS corpus

includes isolated digits and digit sequences from both female
and male speakers in different age groups. It thus provides
sufficient speaker diversity. In [75], the corpus was converted
into a spike version using a threshold codingmechanism [76].
Each utterance from the corpus is firstly pre-processed by a
20-channel Constant-QTransform (CQT) cochlear filter bank
ranging from 200 Hz to 8 kHz. The generated spectrogram is
then further encoded into spikes using the threshold coding.
For each cochlear output channel, 15 onset thresholds and
15 offset thresholds are set for the normalised amplitude. The
upward and downward threshold crossing events of the chan-
nel represent an afferent to form a 30-afferent spike sequence.
In this work, we use the generated spiking TIDIGITS dataset
from [75] to test ODESA, and only isolated digits (11 classes)
from adult female andmale speakers are used, which includes
2464 digit utterances for training and 2486 for testing. MPD-
AL [36] was used to classify the same spiking dataset using
10 neurons for each of the 11 classes in the dataset. MPD-AL
is a version of aggregate-label learning which aims to achieve
a desired spike count from a post-synaptic neuron based on
the feedback signal. MPD-AL uses an iterative method to
find the easiest modifiable time instant during the course
of an input spike pattern based on the membrane potential
traces of a neuron. The synaptic weights are then adjusted
to add or remove post-synaptic spikes until the number of
spikes matches the desired number of spikes. The 10 neurons
assigned for each class are then trained to generate the desired
number of spikes only for spike patterns that belong to their
corresponding class and remain silent for other classes. Two
different decoding schemes were used, based on the desired
number of spikes to be generated, for the correct class neurons
in [36]. The original work labelled the entire spike pattern as
a single class and the number of spikes generated throughout
an input spike pattern was used to determine the predicted
class of the pattern. In our method, we labelled the last spike
of each input spike pattern for a class with a label spike as
ODESA requires a precisely timed label spike. We have used
a three layer networkwith each layer learning spatio-temporal
patterns at different timescales, i.e., 15 ms, 30 ms, and 35 ms
respectively. Table 3 compares the results between the pro-
posed method and MPD-AL. [36] on the same dataset.

Unlike MPD-AL, ODESA networks do not access the
entire history of the activity of a neuron during an input
spike pattern. The supervisory label signal which indicates
the class of an input spike pattern is only available to the
neuron at the last spike in the spike pattern. It is possible to
label every input spike with the label of the whole example,
but that can often be misleading to the network, as two
different digits can have similar sounds/phonemes in parts of
the example. The framework of ODESA expects a correlation
between the input pattern and the label spike. Hence we
decided to only provide the labelled spike at the end of each
example. In contrast, MPD-AL has access to the label of the
input spike pattern at every instance of time. A three layer
(2000-4000-11) ODESA network could achieve a training
accuracy of 96.80% and a test accuracy of 91.4% on the
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FIGURE 10. Evolution of network activity over the epochs in training for the Sentence classification task.

FIGURE 11. Zoomed in network activity at each ODESA layer for the input
line ‘‘SHALL I COMPARE THEE TO THE SUMMERS DAY’’ in Morse Code.

spiking TIDIGIT dataset. Table 3 shows the comparison of
the performances with MPD-AL.

TABLE 3. Test accuracy results on TIDIGIT dataset.

V. DISCUSSION
A. ROLE OF WEIGHT UPDATES
As described in Section III-A, threshold adaptation and
weight update (Equations (13) to (16)) in the output layer
are the key steps that facilitate timely spiking of the neurons
in the correct class group. The learning algorithm resulting
from these updates in itself is capable of learning the features
required to solve the benchmarks presented in this paper.
However, the network failed to converge in some scenarios

depending on the initial conditions. We investigated addi-
tional weight update steps for the output layer (Section III-D)
which can speed up the convergence of the network per-
formance. One of the additional weight update steps was
to use a negative weight update (Equations (20) to (21)))
which is similar to anti-STDP to disincentivise neurons of
wrong class groups from spiking. We observed that this step
improved the final mean training accuracy on many datasets.
The other weight update step investigated was rewarding the
closest neuron in the correct class group in case none of the
neurons in the correct class group spiked. This step improved
the speed of convergence of the model more than the final
accuracy. The closest winner update helps by rewarding the
probable candidate output neuron in the correct class group
immediately, without having to wait until the exact example
reappear in the training data. Both the additional weight
update steps individually improved the final accuracy of the
models, and the combination of all the weight updates gave
the best results in terms of the mean accuracy and its variance
across multiple trials and initial conditions. We used the same
IRIS dataset as in Section IV-C to compare the effects of
the additional weight update steps in improving the mean
accuracy and the variance of the networks across 20 trials of
2-fold cross validation. Figure 12 shows the mean of training
and testing error across multiple trials at each epoch along
with the standard deviation in the training and testing errors
at each epoch. We don’t yet fully understand why the models
see a slight drop in the performance after reaching their peak
and plan to investigate this in future work. We suspect some
form of over-fitting as one of the reasons.

B. DEEP LEARNING IN ODESA
As the learning of ODESA inherently did not have any limita-
tions on the depth of the models, we wanted to investigate the
effect of deeper networks on the performance of the model.
Unfortunately, none of the current spiking benchmarks avail-
able has enough temporal hierarchy to require much deeper
networks that can utilise the hierarchy of temporal features.
Nevertheless, we used the Oxford spike pattern to test any
vanishing effects of the feedback attention signals used in

VOLUME 10, 2022 97923



Y. Bethi et al.: Optimized Deep Spiking Neural Network Architecture Without Gradients

FIGURE 12. Comparison of the model performance with different weight and threshold adaptation on the output layer.

ODESA with increasing depth of the models. We used net-
works of different depths from 1 layer to 10 layers (including
the output layer) and all of them converged to a final accuracy
after a sufficient number of training epochs. Different time
constants (τl) were used for each layer ranging from 0.001s to
0.0075s in the networks. The number of neurons also ranged
from 300 to 1000 with the depth of the network. Figure 13
shows the qualitative output of networks of different depths
for the Oxford spike pattern. We have used the mean IOU

FIGURE 13. Prediction of Oxford spike pattern from networks with
different number of layers ranging from 1 to 10 layers including the
output layer.

per input spike as the measure of performance for the Oxford
spike pattern. Figure 14 shows the trend of the mean IOU per
input spike per epoch during the training of these networks.
We observed that deeper networks required more epochs to
converge to their final performance. This is expected because
the latter layers of a network depend on the features of the
earlier layers. We also noticed that there is a drop in per-
formance when the networks get deeper, but there was no
clear trend in this. Some deeper networks performed better
than other shallower networks and vice versa. This can be
due to multiple reasons including that each layer has to learn
spatio-temporal features at different time scales depending on
the time constant τl of the layers. Depending on the input

spike data, the number of possible spatio-temporal features
can be different at different time constants. These effects
require a more detailed study to fully investigate.

FIGURE 14. Mean IOU per spike over Epochs for different depths of
ODESA Networks on Oxford Spike Pattern.

C. ROLE OF THRESHOLDS IN ODESA
There have been previous works that have used the neuronal
spike thresholds in the learning process. Most commonly
ALIF neurons with dynamic thresholds have been shown
to improve performance in recurrent SNNs [9], [77] and
promote homeostasis in the networkswith STDP [63]. Aggre-
gate label learning methods like Multi-Spike Tempotron
(MST) [34] and Threshold-Driven Plasticity (TDP) [35] used
a Spike Threshold Surface to map the threshold of a neuron
and the number of spikes it generates for a given spike train.
Optimizing the weights using gradients with respect to the
threshold enabled neurons to output the desired number of
spikes per input pattern. Alternatively, Membrane Potential
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Driven Aggregate Learning (MPD-AL) [36] used gradients
with respect to the membrane potential, unlike MST and
TDP. All the aggregate learning methods involve iterations
to find the optimal threshold, or membrane voltage, to gen-
erate the desired number of spikes per neuron. But these
learning algorithms cannot influence the precise timing of the
spikes. Furthermore, the aggregate learning algorithms are
single neuron algorithms and don’t have solutions to learn
hierarchical spatio-temporal features using multiple layers
of neurons. Learning in ODESA doesn’t involve finding
the correct target threshold or membrane potential. Instead,
ODESA finds the right weights and thresholds by online
adaptation of the thresholds and facilitates neurons to spike
precisely at the time of a global attention signal created
by a supervisory signal. ODESA networks are capable of
generating precisely timed spike patterns that can be learnt.
In addition to that, ODESA can use spike-timing-dependent
threshold adaptation to learn hierarchies of spatio-temporal
features at multiple timescales by driving the adaptation of
the previous layer’s thresholds based on the current layer’s
activity. Evidence shows that rapid threshold adaptation in
pre-synaptic neurons occurs with correlated spiking in the
post-synaptic neuron as a form of spike-timing-dependent
intrinsic plasticity in biology [78].

FIGURE 15. The trend of sensitivity and specificity of a class in the
Sentence classification task with respect to the threshold of the
corresponding output neuron.

The thresholds in ODESA networks maintain neuronal
homeostasis while also acting as gates to the adaptation of
synaptic weights. When an output neuron does not spike
for an important input spike, the threshold of the neuron is
decreased until the neuron starts spiking. When any of those
spikes match with the target spikes, the threshold of that
neuron is increased while its weights are adjusted simulta-
neously. Higher thresholds make neurons more selective in
their spiking. Every time the neuron weights are updated for
an input time surface context, the likelihood of the neuron
spiking again for the same input context increases, and the
threshold increase makes it difficult for the neuron to spike

for other contexts. If a neuron gets too specific, its thresholds
are lowered again to let the neuron spike for a broader range of
input spike patterns. This continues until the neuron reaches
a balance between the desired activity and its activity. The
desired activity for the output layer is the label output spike
train. Similarly, the goal of the hidden neurons is to support
the spikes in the subsequent layer. Increasing the thresholds
of the participant neurons and lowering the thresholds of inac-
tive neurons for a spike in the next layer forces all the neurons
in the layer to participate equally for every spike generated in
the next layer. The combination of threshold adaptation and
weight updates makes the neurons gradually become more
specific in their spiking and match the spiking behaviour to
the desired spike train. This can be seen in the evolution of
layer activity throughout the training in Figure 10.
Figure 15 shows the trend of sensitivity and specificity of

a class in the Sentence classification task. The drops in the
threshold of an output neuron always occur with the drops
in the sensitivity of a class. This is due to the punishment of
the output neuron when it misses a ground truth label spike.
An output neuron can miss the spikes when its threshold
gets too high. On the other hand, the specificity of the class
improves with a higher threshold of a neuron. When the
threshold of a neuron is lowered, it also affects the specificity
of the neuron as it spikes for other input spikes as well. This
interplay between the rising and falling of the threshold helps
the neuron to get more precise with its spiking and predict
as many labelled spikes as possible. The threshold reaches
the maximum value when no label spikes are missed and
it precisely spikes only for the labelled input spikes. The
thresholds can also be viewed as the confidence of a neuron
for its corresponding class.

D. OUTPUT DECODING IN ODESA
Different output decoding schemas are used in SNN models
depending on output neurons using a Latency code or a Rate
code. The time to first spike would require resetting to some
default state from which the time of the spikes is supposed
to be calculated. Rate coding on the other hand offers some
error tolerance as a few missed spikes may not affect the
firing rate of the output neurons. The output label spikes in
ODESA are precisely timed with respect to the input spikes.
The output spike from an ODESA model indicates the best
prediction given all the evidence until that instant in time.
ODESAperforms the best when there exists a strong temporal
correlation between the label spike and the labelled input
spike. This sometimes can lead to an erroneous classification
in some cases when the labelling is not precise. Tasks like
Morse code detection, generally don’t have this problem as
they have a precise ending to a signal that can trigger the
output classification. But there are very few openly available
datasets that have temporally precise labelling. Spike-based
TIDIGITS dataset examples usually have a few noisy input
spikes at the end of each example which can make it chal-
lenging to learn the temporal correlation between the labelled
input spike and the learnt label spike of the example.
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E. ADVANTAGES OF ODESA
Previous works have used multiple layers in SNNs to learn a
spatial hierarchy of features at the same timescale. ODESA
uses multi-layer networks to learn a spatio-temporal hierar-
chy of features. ODESA achieves sequence learning with-
out having to rely on recurrent connections and only uses
feed-forward connections in the network. This is achieved by
calculating traces of neurons using longer time constants as
we go deeper into the multi-layered network. Many of the
previous event-driven feature extraction architectures [44],
[45], [46] also require a classifier at the the end of the SNN
to achieve classification in SNNs. ODESA eliminates the
requirement of such a separate classifier module and provides
a solution using a spiking neural architecture from end to
end. This architecture not only allows classification by the
SNN but also allows them to learn arbitrary transformations
between two spike streams.

ODESA does not rely on surrogate gradients or real
continuous-valued error feedback signals. The entirety of
learning is achieved by only using binary attention signals,
which are bio-plausible. This way, even when a deeper layer
in the network goes silent, the earlier layers continue learn-
ing without having to wait for feedback signals from the
silent layer. Another benefit of not using surrogate gradi-
ents and only using binary feedback signals is that ODESA
doesn’t have to rely on differentiable loss functions. In error
back-propagation methods, the weights of a layer cannot
be updated until an entire forward pass of prediction and
backward pass of error calculation occurs. The learning of
any hidden layer of ODESA only depends on the global
attention signal from the labelled output spike train and the
local attention signal from the layer above it. In essence,
the learning of hidden layers in ODESA can continue even
when a higher layer has gone completely silent. Furthermore,
the computations in ODESA networks are all causal in the
sense that no signals are propagated back in time, and no
form of error BPTT occurs in the network. ODESA only
uses computations that are event-driven and not clock-driven.
This is valuable for energy-efficient neuromorphic hardware
and can work well with neuromorphic sensors which may
not generate data at all times. As the learning algorithm is
online in nature, ODESA can also handle concept-drift in the
data and keep updating its parameters in the light of any new
changes in the input data distributions. But this can also lead
to catastrophic forgetting in cases where the training data is
not uniformly distributed.

The supervision in ODESA networks is not coupled with a
fixed neuron model. The weight update steps in Section III-A
only perform the function of maximising the dot product
of the winning input time surface context and the synaptic
weights of the winner neuron. ODESA can be easily extended
to other spiking neuronal models that allow threshold adap-
tation, with an equivalent synaptic weight update step that
increases the likelihood of the neuron to spike again for the
same input spike pattern. For neuron models with synaptic
delays, the time constant of the trace of neurons has to be

increased to take into account the delayed input to the next
layer which may be crucial for future implementation in
neuromorphic hardware. Similar modifications to the trace
function (currently instantaneous exponential decay) would
have to be made for higher-order dynamics of neuronal
synaptic responses(e.g Alpha PSP). This opens door to more
novel abstract spiking neuronal units that can be specialised
to the task and input data (e.g., Neuromorphic vision data,
Neuromorphic audio data, etc.). It also paves the way to
use task-specific network architectures like convolutional
layers and skip connections as used in ANNs which can
induce task-specific priors to the features. In future work,
the assumption of having an input spike for every ground
truth spike can be relaxed by including delays in the neuron
synaptic models.

F. LIMITATIONS OF ODESA
The learning in each layer of ODESA is essentially a
spike-based clustering algorithm similar to K-Means cluster-
ing. The neurons in ODESA learn features by learning the
centres of the cluster of time surface contexts for which each
neuron fires along with an acceptance boundary around this
centre. Negative weights are not present in ODESA neurons
due to the nature of the weight updates which are a form of the
exponential moving average. Even the negativeweight update
step when added does not typically result in the generation
of negative weights. The negative weight update step only
helps in moving the weights away from the given time surface
context in the high dimensional space. As can be seen in the
Figure 8, none of the weights is negative. This can potentially
limit the performance compared to some other SNN meth-
ods which use neurons with negative weights. One possible
solution is using an inhibitory neuron group that learns com-
plimentary features using the same principles of ODESA in
each layer. Alternate weight update paradigms which allow
negative weights can also be one of the possibilities to explore
in future work. Here we focused on extending the optimised
SNN concept to multiple layers without resorting to error
back-propagation which is not bio-plausible and challenging
to implement in neuromorphic hardware.

VI. CONCLUSION
In this work, we introduced a novel optimised abstrac-
tion to SNNs that can be used to solve practical machine
learning problems in the spiking domain. We conducted
a comprehensive evaluation of the architecture on various
spiking datasets available. Unlike other methods that try to
approximate error back-propagation to SNNs using tech-
niques like surrogate gradients, we explore using a simple
local spike-timing-dependent adaptation of thresholds and
weights as the only way to train spiking neural architectures.
The learning rule in ODESA networks is an event-driven
supervised learning algorithm that enables learning transfor-
mations between arbitrary input and output spike trains under
the single assumption that there exists a spike in the input
train for every spike in the output spike train. We show that
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learning can be achieved in deep spiking neural architectures
using binary attention signals between neuron groups and one
global binary attention signal along with a simple three-factor
adaptation of weights and thresholds. ODESA networks have
sparse activity due to the hard WTA constraint on each layer,
making it energy efficient to implement on neuromorphic
hardware. The local learning rules of ODESA also help
reduce the memory accesses required, as the weight updates
do not depend on the parameters of other computational
nodes in the network. This enables on-chip online learning
capabilities for neuromorphic hardware that can exploit the
afore-mentioned characteristics. This work is an attempt at
bridging the gap between machine learning and SNN mod-
els using a novel abstraction of biological spiking networks
without relying on back-propagation of gradients.
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