30,691 research outputs found

    Use of the Metropolis-Hastings Algorithm in the Calibration of a Patient Level Simulation of Prostate Cancer Screening

    Get PDF
    Designing cancer screening programmes requires an understanding of epidemiology, disease natural history and screening test characteristics. Many of these aspects of the decision problem are unobservable and data can only tell us about their joint uncertainty. A Metropolis-Hastings algorithm was used to calibrate a patient level simulation model of the natural history of prostate cancer to national cancer registry and international trial data. This method correctly represents the joint uncertainty amongst the model parameters by drawing efficiently from a high dimensional correlated parameter space. The calibration approach estimates the probability of developing prostate cancer, the rate of disease progression and sensitivity of the screening test. This is then used to estimate the impact of prostate cancer screening in the UK. This case study demonstrates that the Metropolis-Hastings approach to calibration can be used to appropriately characterise the uncertainty alongside computationally expensive simulation models

    GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation

    Full text link
    Scientists often express their understanding of the world through a computationally demanding simulation program. Analyzing the posterior distribution of the parameters given observations (the inverse problem) can be extremely challenging. The Approximate Bayesian Computation (ABC) framework is the standard statistical tool to handle these likelihood free problems, but they require a very large number of simulations. In this work we develop two new ABC sampling algorithms that significantly reduce the number of simulations necessary for posterior inference. Both algorithms use confidence estimates for the accept probability in the Metropolis Hastings step to adaptively choose the number of necessary simulations. Our GPS-ABC algorithm stores the information obtained from every simulation in a Gaussian process which acts as a surrogate function for the simulated statistics. Experiments on a challenging realistic biological problem illustrate the potential of these algorithms

    Adaptive independent Metropolis--Hastings

    Full text link
    We propose an adaptive independent Metropolis--Hastings algorithm with the ability to learn from all previous proposals in the chain except the current location. It is an extension of the independent Metropolis--Hastings algorithm. Convergence is proved provided a strong Doeblin condition is satisfied, which essentially requires that all the proposal functions have uniformly heavier tails than the stationary distribution. The proof also holds if proposals depending on the current state are used intermittently, provided the information from these iterations is not used for adaption. The algorithm gives samples from the exact distribution within a finite number of iterations with probability arbitrarily close to 1. The algorithm is particularly useful when a large number of samples from the same distribution is necessary, like in Bayesian estimation, and in CPU intensive applications like, for example, in inverse problems and optimization.Comment: Published in at http://dx.doi.org/10.1214/08-AAP545 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dimension-Independent MCMC Sampling for Inverse Problems with Non-Gaussian Priors

    Full text link
    The computational complexity of MCMC methods for the exploration of complex probability measures is a challenging and important problem. A challenge of particular importance arises in Bayesian inverse problems where the target distribution may be supported on an infinite dimensional space. In practice this involves the approximation of measures defined on sequences of spaces of increasing dimension. Motivated by an elliptic inverse problem with non-Gaussian prior, we study the design of proposal chains for the Metropolis-Hastings algorithm with dimension independent performance. Dimension-independent bounds on the Monte-Carlo error of MCMC sampling for Gaussian prior measures have already been established. In this paper we provide a simple recipe to obtain these bounds for non-Gaussian prior measures. To illustrate the theory we consider an elliptic inverse problem arising in groundwater flow. We explicitly construct an efficient Metropolis-Hastings proposal based on local proposals, and we provide numerical evidence which supports the theory.Comment: 26 pages, 7 figure

    Stochastic Weighted Graphs: Flexible Model Specification and Simulation

    Get PDF
    In most domains of network analysis researchers consider networks that arise in nature with weighted edges. Such networks are routinely dichotomized in the interest of using available methods for statistical inference with networks. The generalized exponential random graph model (GERGM) is a recently proposed method used to simulate and model the edges of a weighted graph. The GERGM specifies a joint distribution for an exponential family of graphs with continuous-valued edge weights. However, current estimation algorithms for the GERGM only allow inference on a restricted family of model specifications. To address this issue, we develop a Metropolis--Hastings method that can be used to estimate any GERGM specification, thereby significantly extending the family of weighted graphs that can be modeled with the GERGM. We show that new flexible model specifications are capable of avoiding likelihood degeneracy and efficiently capturing network structure in applications where such models were not previously available. We demonstrate the utility of this new class of GERGMs through application to two real network data sets, and we further assess the effectiveness of our proposed methodology by simulating non-degenerate model specifications from the well-studied two-stars model. A working R version of the GERGM code is available in the supplement and will be incorporated in the gergm CRAN package.Comment: 33 pages, 6 figures. To appear in Social Network
    • …
    corecore