3,086 research outputs found

    Sensitivity analysis of expensive black-box systems using metamodeling

    Get PDF
    Simulations are becoming ever more common as a tool for designing complex products. Sensitivity analysis techniques can be applied to these simulations to gain insight, or to reduce the complexity of the problem at hand. However, these simulators are often expensive to evaluate and sensitivity analysis typically requires a large amount of evaluations. Metamodeling has been successfully applied in the past to reduce the amount of required evaluations for design tasks such as optimization and design space exploration. In this paper, we propose a novel sensitivity analysis algorithm for variance and derivative based indices using sequential sampling and metamodeling. Several stopping criteria are proposed and investigated to keep the total number of evaluations minimal. The results show that both variance and derivative based techniques can be accurately computed with a minimal amount of evaluations using fast metamodels and FLOLA-Voronoi or density sequential sampling algorithms.Comment: proceedings of winter simulation conference 201

    A Language Description is More than a Metamodel

    Get PDF
    Within the context of (software) language engineering, language descriptions are considered first class citizens. One of the ways to describe languages is by means of a metamodel, which represents the abstract syntax of the language. Unfortunately, in this process many language engineers forget the fact that a language also needs a concrete syntax and a semantics. In this paper I argue that neither of these can be discarded from a language description. In a good language description the abstract syntax is the central element, which functions as pivot between concrete syntax and semantics. Furthermore, both concrete syntax and semantics should be described in a well-defined formalism

    Mechanical MNIST: A benchmark dataset for mechanical metamodels

    Full text link
    Metamodels, or models of models, map defined model inputs to defined model outputs. Typically, metamodels are constructed by generating a dataset through sampling a direct model and training a machine learning algorithm to predict a limited number of model outputs from varying model inputs. When metamodels are constructed to be computationally cheap, they are an invaluable tool for applications ranging from topology optimization, to uncertainty quantification, to multi-scale simulation. By nature, a given metamodel will be tailored to a specific dataset. However, the most pragmatic metamodel type and structure will often be general to larger classes of problems. At present, the most pragmatic metamodel selection for dealing with mechanical data has not been thoroughly explored. Drawing inspiration from the benchmark datasets available to the computer vision research community, we introduce a benchmark data set (Mechanical MNIST) for constructing metamodels of heterogeneous material undergoing large deformation. We then show examples of how our benchmark dataset can be used, and establish baseline metamodel performance. Because our dataset is readily available, it will enable the direct quantitative comparison between different metamodeling approaches in a pragmatic manner. We anticipate that it will enable the broader community of researchers to develop improved metamodeling techniques for mechanical data that will surpass the baseline performance that we show here.Accepted manuscrip

    Solving the TTC 2011 Reengineering Case with VIATRA2

    Full text link
    The current paper presents a solution of the Program Understanding: A Reengineering Case for the Transformation Tool Contest using the VIATRA2 model transformation tool.Comment: In Proceedings TTC 2011, arXiv:1111.440

    P ORTOLAN: a Model-Driven Cartography Framework

    Get PDF
    Processing large amounts of data to extract useful information is an essential task within companies. To help in this task, visualization techniques have been commonly used due to their capacity to present data in synthesized views, easier to understand and manage. However, achieving the right visualization display for a data set is a complex cartography process that involves several transformation steps to adapt the (domain) data to the (visualization) data format expected by visualization tools. To maximize the benefits of visualization we propose Portolan, a generic model-driven cartography framework that facilitates the discovery of the data to visualize, the specification of view definitions for that data and the transformations to bridge the gap with the visualization tools. Our approach has been implemented on top of the Eclipse EMF modeling framework and validated on three different use cases
    corecore