32,564 research outputs found

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Definition, implementation and validation of energy code smells: an exploratory study on an embedded system

    Get PDF
    Optimizing software in terms of energy efficiency is one of the challenges that both research and industry will have to face in the next few years.We consider energy efficiency as a software product quality characteristic, to be improved through the refactoring of appropriate code pattern: the aim of this work is identifying those code patterns, hereby defined as Energy Code Smells, that might increase the impact of software over power consumption. For our purposes, we perform an experiment consisting in the execution of several code patterns on an embedded system. These code patterns are executed in two versions: the first one contains a code issue that could negatively impact power consumption, the other one is refactored removing the issue. We measure the power consumption of the embedded device during the execution of each code pattern. We also track the execution time to investigate whether Energy Code Smells are also Performance Smells. Our results show that some Energy Code Smells actually have an impact over power consumption in the magnitude order of micro Watts. Moreover, those Smells did not introduce a performance decreas

    An App Performance Optimization Advisor for Mobile Device App Marketplaces

    Full text link
    On mobile phones, users and developers use apps official marketplaces serving as repositories of apps. The Google Play Store and Apple Store are the official marketplaces of Android and Apple products which offer more than a million apps. Although both repositories offer description of apps, information concerning performance is not available. Due to the constrained hardware of mobile devices, users and developers have to meticulously manage the resources available and they should be given access to performance information about apps. Even if this information was available, the selection of apps would still depend on user preferences and it would require a huge cognitive effort to make optimal decisions. Considering this fact we propose APOA, a recommendation system which can be implemented in any marketplace for helping users and developers to compare apps in terms of performance. APOA uses as input metric values of apps and a set of metrics to optimize. It solves an optimization problem and it generates optimal sets of apps for different user's context. We show how APOA works over an Android case study. Out of 140 apps, we define typical usage scenarios and we collect measurements of power, CPU, memory, and network usages to demonstrate the benefit of using APOA.Comment: 18 pages, 8 figure
    • ā€¦
    corecore