3,077 research outputs found

    Understanding and predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using domain genetic interactions

    Get PDF
    Genetic interactions have been widely used to define functional relationships between proteins and pathways. In this study, we demonstrated that yeast synthetic lethal genetic interactions can be explained by the genetic interactions between domains of those proteins. The domain genetic interactions rarely overlap with the domain physical interactions from iPfam database and provide a complementary view about domain relationships. Moreover, we found that domains in multidomain yeast proteins contribute to their genetic interactions differently. The domain genetic interactions help more precisely define the function related to the synthetic lethal genetic interactions, and then help understand how domains contribute to different functionalities of multidomain proteins. Using the probabilities of domain genetic interactions, we were able to predict novel yeast synthetic lethal genetic interactions. Furthermore, we had also identified novel compensatory pathways from the predicted synthetic lethal genetic interactions. Our study significantly improved the understanding of yeast mulitdomain proteins, the synthetic lethal genetic interactions and the functional relationships between proteins and pathways.Comment: 36 page, 4 figure

    Predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using short polypeptide clusters

    Get PDF
    Background: Protein synthetic lethal genetic interactions are useful to define functional relationships between proteins and pathways. However, the molecular mechanism of synthetic lethal genetic interactions remains unclear. Results: In this study we used the clusters of short polypeptide sequences, which are typically shorter than the classically defined protein domains, to characterize the functionalities of proteins. We developed a framework to identify significant short polypeptide clusters from yeast protein sequences, and then used these short polypeptide clusters as features to predict yeast synthetic lethal genetic interactions. The short polypeptide clusters based approach provides much higher coverage for predicting yeast synthetic lethal genetic interactions. Evaluation using experimental data sets showed that the short polypeptide clusters based approach is superior to the previous protein domain based one. Conclusion: We were able to achieve higher performance in yeast synthetic lethal genetic interactions prediction using short polypeptide clusters as features. Our study suggests that the short polypeptide cluster may help better understand the functionalities of proteins

    Predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using short polypeptide clusters

    Get PDF
    Background: Protein synthetic lethal genetic interactions are useful to define functional relationships between proteins and pathways. However, the molecular mechanism of synthetic lethal genetic interactions remains unclear. Results: In this study we used the clusters of short polypeptide sequences, which are typically shorter than the classically defined protein domains, to characterize the functionalities of proteins. We developed a framework to identify significant short polypeptide clusters from yeast protein sequences, and then used these short polypeptide clusters as features to predict yeast synthetic lethal genetic interactions. The short polypeptide clusters based approach provides much higher coverage for predicting yeast synthetic lethal genetic interactions. Evaluation using experimental data sets showed that the short polypeptide clusters based approach is superior to the previous protein domain based one. Conclusion: We were able to achieve higher performance in yeast synthetic lethal genetic interactions prediction using short polypeptide clusters as features. Our study suggests that the short polypeptide cluster may help better understand the functionalities of proteins

    Gene function prediction from congruent synthetic lethal interactions in yeast

    Get PDF
    We predicted gene function using synthetic lethal genetic interactions between null alleles in Saccharomyces cerevisiae. Phenotypic and protein interaction data indicate that synthetic lethal gene pairs function in parallel or compensating pathways. Congruent gene pairs, defined as sharing synthetic lethal partners, are in single pathway branches. We predicted benomyl sensitivity and nuclear migration defects using congruence; these phenotypes were uncorrelated with direct synthetic lethality. We also predicted YLL049W as a new member of the dynein–dynactin pathway and provided new supporting experimental evidence. We performed synthetic lethal screens of the parallel mitotic exit network (MEN) and Cdc14 early anaphase release pathways required for late cell cycle. Synthetic lethal interactions bridged genes in these pathways, and high congruence linked genes within each pathway. Synthetic lethal interactions between MEN and all components of the Sin3/Rpd3 histone deacetylase revealed a novel function for Sin3/Rpd3 in promoting mitotic exit in parallel to MEN. These in silico methods can predict phenotypes and gene functions and are applicable to genomic synthetic lethality screens in yeast and analogous RNA interference screens in metazoans

    Predicting Yeast Synthetic Lethal Genetic Interactions Using Protein Domains

    Get PDF
    Synthetic lethal genetic interaction (SLGI) is an important biological phenomenon. Such interactions are of interest as they can be used to predict function of unknown proteins and find drug targets or drug combinations. High throughput biological experiments enhance the capability in identifying genetic interactions, but the large amount of protein pairs still make the task of genome-wide identification of genetic interactions overwhelming. Computational based prediction of SLGIs is promising but still hampered by the unclear molecular mechanism of SLGIs. Protein domains with conserved functions serve as the building blocks of proteins. The genetic interaction that occurs between a pair of proteins could be essentially related to or even dominated by the domains underneath. We applied support vector machine (SVM) classifier and maximum likelihood estimation (MLE) method to predict SLGIs in yeast based on domain information in proteins. Our study demonstrates that yeast SLGIs could be explained by the genetic interactions between domains of those proteins. Moreover, we retrieved a set of polypeptide clusters and used them for the prediction of SLGIs. Besides providing better performance, this approach allows us to predict genetic interactions in a more general fashion. We proposed a novel idea for the prediction of SLGIs, upon which multiple approaches were derived. This study helps the understanding of originality of functional relationship in SLGIs at the domain level that may significantly aid the biology community in further analysis of genetic interaction related studies

    Automated data integration for developmental biological research

    Get PDF
    In an era exploding with genome-scale data, a major challenge for developmental biologists is how to extract significant clues from these publicly available data to benefit our studies of individual genes, and how to use them to improve our understanding of development at a systems level. Several studies have successfully demonstrated new approaches to classic developmental questions by computationally integrating various genome-wide data sets. Such computational approaches have shown great potential for facilitating research: instead of testing 20,000 genes, researchers might test 200 to the same effect. We discuss the nature and state of this art as it applies to developmental research

    A global genetic interaction network maps a wiring diagram of cellular function

    Get PDF
    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. INTRODUCTION: Genetic interactions occur when mutations in two or more genes combine to generate an unexpected phenotype. An extreme negative or synthetic lethal genetic interaction occurs when two mutations, neither lethal individually, combine to cause cell death. Conversely, positive genetic interactions occur when two mutations produce a phenotype that is less severe than expected. Genetic interactions identify functional relationships between genes and can be harnessed for biological discovery and therapeutic target identification. They may also explain a considerable component of the undiscovered genetics associated with human diseases. Here, we describe construction and analysis of a comprehensive genetic interaction network for a eukaryotic cell. RATIONALE: Genome sequencing projects are providing an unprecedented view of genetic variation. However, our ability to interpret genetic information to predict inherited phenotypes remains limited, in large part due to the extensive buffering of genomes, making most individual eukaryotic genes dispensable for life. To explore the extent to which genetic interactions reveal cellular function and contribute to complex phenotypes, and to discover the general principles of genetic networks, we used automated yeast genetics to construct a global genetic interaction network. RESULTS: We tested most of the ~6000 genes in the yeast Saccharomyces cerevisiae for all possible pairwise genetic interactions, identifying nearly 1 million interactions, including ~550,000 negative and ~350,000 positive interactions, spanning ~90% of all yeast genes. Essential genes were network hubs, displaying five times as many interactions as nonessential genes. The set of genetic interactions or the genetic interaction profile for a gene provides a quantitative measure of function, and a global network based on genetic interaction profile similarity revealed a hierarchy of modules reflecting the functional architecture of a cell. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections associated with defects in cell cycle progression or cellular proteostasis. Importantly, the global network illustrates how coherent sets of negative or positive genetic interactions connect protein complex and pathways to map a functional wiring diagram of the cell. CONCLUSION: A global genetic interaction network highlights the functional organization of a cell and provides a resource for predicting gene and pathway function. This network emphasizes the prevalence of genetic interactions and their potential to compound phenotypes associated with single mutations. Negative genetic interactions tend to connect functionally related genes and thus may be predicted using alternative functional information. Although less functionally informative, positive interactions may provide insights into general mechanisms of genetic suppression or resiliency. We anticipate that the ordered topology of the global genetic network, in which genetic interactions connect coherently within and between protein complexes and pathways, may be exploited to decipher genotype-to-phenotype relationships

    A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic interaction profiles are highly informative and helpful for understanding the functional linkages between genes, and therefore have been extensively exploited for annotating gene functions and dissecting specific pathway structures. However, our understanding is rather limited to the relationship between double concurrent perturbation and various higher level phenotypic changes, e.g. those in cells, tissues or organs. Modifier screens, such as synthetic genetic arrays (SGA) can help us to understand the phenotype caused by combined gene mutations. Unfortunately, exhaustive tests on all possible combined mutations in any genome are vulnerable to combinatorial explosion and are infeasible either technically or financially. Therefore, an accurate computational approach to predict genetic interaction is highly desirable, and such methods have the potential of alleviating the bottleneck on experiment design.</p> <p>Results</p> <p>In this work, we introduce a computational systems biology approach for the accurate prediction of pairwise synthetic genetic interactions (SGI). First, a high-coverage and high-precision functional gene network (FGN) is constructed by integrating protein-protein interaction (PPI), protein complex and gene expression data; then, a graph-based semi-supervised learning (SSL) classifier is utilized to identify SGI, where the topological properties of protein pairs in weighted FGN is used as input features of the classifier. We compare the proposed SSL method with the state-of-the-art supervised classifier, the support vector machines (SVM), on a benchmark dataset in <it>S. cerevisiae </it>to validate our method's ability to distinguish synthetic genetic interactions from non-interaction gene pairs. Experimental results show that the proposed method can accurately predict genetic interactions in <it>S. cerevisiae </it>(with a sensitivity of 92% and specificity of 91%). Noticeably, the SSL method is more efficient than SVM, especially for very small training sets and large test sets.</p> <p>Conclusions</p> <p>We developed a graph-based SSL classifier for predicting the SGI. The classifier employs topological properties of weighted FGN as input features and simultaneously employs information induced from labelled and unlabelled data. Our analysis indicates that the topological properties of weighted FGN can be employed to accurately predict SGI. Also, the graph-based SSL method outperforms the traditional standard supervised approach, especially when used with small training sets. The proposed method can alleviate experimental burden of exhaustive test and provide a useful guide for the biologist in narrowing down the candidate gene pairs with SGI. The data and source code implementing the method are available from the website: <url>http://home.ustc.edu.cn/~yzh33108/GeneticInterPred.htm</url></p
    corecore