16,819 research outputs found

    Achieving quantum precision limit in adaptive qubit state tomography

    Full text link
    The precision limit in quantum state tomography is of great interest not only to practical applications but also to foundational studies. However, little is known about this subject in the multiparameter setting even theoretically due to the subtle information tradeoff among incompatible observables. In the case of a qubit, the theoretic precision limit was determined by Hayashi as well as Gill and Massar, but attaining the precision limit in experiments has remained a challenging task. Here we report the first experiment which achieves this precision limit in adaptive quantum state tomography on optical polarization qubits. The two-step adaptive strategy employed in our experiment is very easy to implement in practice. Yet it is surprisingly powerful in optimizing most figures of merit of practical interest. Our study may have significant implications for multiparameter quantum estimation problems, such as quantum metrology. Meanwhile, it may promote our understanding about the complementarity principle and uncertainty relations from the information theoretic perspective.Comment: 9 pages, 4 figures; titles changed and structure reorganise

    Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device

    Full text link
    The properties of linear instabilities in the Large Plasma Device [W. Gekelman et al., Rev. Sci. Inst., 62, 2875 (1991)] are studied both through analytic calculations and solving numerically a system of linearized collisional plasma fluid equations using the 3D fluid code BOUT [M. Umansky et al., Contrib. Plasma Phys. 180, 887 (2009)], which has been successfully modified to treat cylindrical geometry. Instability drive from plasma pressure gradients and flows is considered, focusing on resistive drift waves, the Kelvin-Helmholtz and rotational interchange instabilities. A general linear dispersion relation for partially ionized collisional plasmas including these modes is derived and analyzed. For LAPD relevant profiles including strongly driven flows it is found that all three modes can have comparable growth rates and frequencies. Detailed comparison with solutions of the analytic dispersion relation demonstrates that BOUT accurately reproduces all characteristics of linear modes in this system.Comment: Published in Physics of Plasmas, 17, 102107 (2010

    Cell-cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis

    Full text link
    Collective cell responses to exogenous cues depend on cell-cell interactions. In principle, these can result in enhanced sensitivity to weak and noisy stimuli. However, this has not yet been shown experimentally, and, little is known about how multicellular signal processing modulates single cell sensitivity to extracellular signaling inputs, including those guiding complex changes in the tissue form and function. Here we explored if cell-cell communication can enhance the ability of cell ensembles to sense and respond to weak gradients of chemotactic cues. Using a combination of experiments with mammary epithelial cells and mathematical modeling, we find that multicellular sensing enables detection of and response to shallow Epidermal Growth Factor (EGF) gradients that are undetectable by single cells. However, the advantage of this type of gradient sensing is limited by the noisiness of the signaling relay, necessary to integrate spatially distributed ligand concentration information. We calculate the fundamental sensory limits imposed by this communication noise and combine them with the experimental data to estimate the effective size of multicellular sensory groups involved in gradient sensing. Functional experiments strongly implicated intercellular communication through gap junctions and calcium release from intracellular stores as mediators of collective gradient sensing. The resulting integrative analysis provides a framework for understanding the advantages and limitations of sensory information processing by relays of chemically coupled cells.Comment: paper + supporting information, total 35 pages, 15 figure

    Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus

    Get PDF
    Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence - by controlling for phylogenetic structure - for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both our understanding of antigenic relationships and our power to control disease

    A Monte-Carlo study of meanders

    Full text link
    We study the statistics of meanders, i.e. configurations of a road crossing a river through "n" bridges, and possibly winding around the source, as a toy model for compact folding of polymers. We introduce a Monte-Carlo method which allows us to simulate large meanders up to n = 400. By performing large "n" extrapolations, we give asymptotic estimates of the connectivity per bridge R = 3.5018(3), the configuration exponent gamma = 2.056(10), the winding exponent nu = 0.518(2) and other quantities describing the shape of meanders. Keywords : folding, meanders, Monte-Carlo, treeComment: 12 pages, revtex, 11 eps figure

    Forecasting for Environmental Decision Making

    Get PDF
    Those making environmental decisions must not only characterize the present, they must also forecast the future. They must do so for at least two reasons. First, if a no-action alternative is pursued, they must consider whether current trends will be favorable or unfavorable in the future. Second, if an intervention is pursued instead, they must evaluate both its probable success given future trends and its impacts on the human and natural environment. Forecasting, by which I mean explicit processes for determining what is likely to happen in the future, can help address each of these areas.forecasting, environment, decision making, environmental decision making

    Forecasting for Environmental Decision Making

    Get PDF
    Those making environmental decisions must not only characterize the present, they must also forecast the future. They must do so for at least two reasons. First, if a no-action alternative is pursued, they must consider whether current trends will be favorable or unfavorable in the future. Second, if an intervention is pursued instead, they must evaluate both its probable success given future trends and its impacts on the human and natural environment. Forecasting, by which I mean explicit processes for determining what is likely to happen in the future, can help address each of these areas.forecasting, environment

    A generalized multi-polaron expansion for the spin-boson model: Environmental entanglement and the biased two-state system

    Full text link
    We develop a systematic variational coherent state expansion for the many-body ground state of the spin-boson model, in which a quantum two-level system is coupled to a continuum of harmonic oscillators. Energetic constraints at the heart of this technique are rationalized in terms of polarons (displacements of the bath states in agreement with classical expectations) and antipolarons (counter-displacements due to quantum tunneling effects). We present a comprehensive study of the ground state two-level system population and coherence as a function of tunneling amplitude, dissipation strength, and bias (akin to asymmetry of the double well potential defining the two-state system). The entanglement among the different environmental modes is investigated by looking at spectroscopic signatures of the bipartite entanglement entropy between a given environmental mode and all the other modes. We observe a drastic change in behavior of this entropy for increasing dissipation, indicative of the entangled nature of the environmental states. In addition, the entropy spreads over a large energy range at strong dissipation, a testimony to the wide entanglement window characterizing the underlying Kondo state. Finally, comparisons to accurate numerical renormalization group calculations and to the exact Bethe Ansatz solution of the model demonstrate the rapid convergence of our variationally-optimized multi-polaron expansion, suggesting that it should also be a useful tool for dissipative models of greater complexity, as relevant for numerous systems of interest in quantum physics and chemistry.Comment: 17 pages, 14 figure
    corecore