16,400 research outputs found

    A pathway to independence : wayfinding systems which adapt to a visually impaired person's context

    Get PDF
    Despite an increased amount of technologies and systems designed to address the navigational requirements of the visually impaired community of approximately 7.4 million in Europe, current research has failed to sufficiently address the human issues associated to their design and use. As more types of sensing technologies are developed to facilitate visually impaired travellers for different navigational purposes (local vs. distant and indoor vs. outdoor), an effective process of synchronisation is required. This synchronisation is represented through context-aware computing, which allows contextual information to not just be sensed (like most current wayfinding systems), but also adapted, discovered and augmented. In this paper, three user studies concerning the suitability of different types of navigational information for visually impaired and sighted people are described. For such systems to be effective, human cognitive maps, models and intentions need to be the focus of further research, in order to provide information that is tailored to a user's task, situation or environment. Methodologies aimed at establishing these issues need to be demonstrated through a multidisciplinary framework

    Tac-tiles: multimodal pie charts for visually impaired users

    Get PDF
    Tac-tiles is an accessible interface that allows visually impaired users to browse graphical information using tactile and audio feedback. The system uses a graphics tablet which is augmented with a tangible overlay tile to guide user exploration. Dynamic feedback is provided by a tactile pin-array at the fingertips, and through speech/non-speech audio cues. In designing the system, we seek to preserve the affordances and metaphors of traditional, low-tech teaching media for the blind, and combine this with the benefits of a digital representation. Traditional tangible media allow rapid, non-sequential access to data, promote easy and unambiguous access to resources such as axes and gridlines, allow the use of external memory, and preserve visual conventions, thus promoting collaboration with sighted colleagues. A prototype system was evaluated with visually impaired users, and recommendations for multimodal design were derived

    MultiVis: improving access to visualisations for visually impaired people

    Get PDF
    This paper illustrates work undertaken on the MultiVis project to allow visually impaired users both to construct and browse mathematical graphs effectively. We start by discussing the need for such work, before discussing some of the problems of current technology. We then discuss Graph Builder, a novel tool to allow interactive graph construction, and Sound Bar which provides quick overview access to bar graphs

    Feeling what you hear: tactile feedback for navigation of audio graphs

    Get PDF
    Access to digitally stored numerical data is currently very limited for sight impaired people. Graphs and visualizations are often used to analyze relationships between numerical data, but the current methods of accessing them are highly visually mediated. Representing data using audio feedback is a common method of making data more accessible, but methods of navigating and accessing the data are often serial in nature and laborious. Tactile or haptic displays could be used to provide additional feedback to support a point-and-click type interaction for the visually impaired. A requirements capture conducted with sight impaired computer users produced a review of current accessibility technologies, and guidelines were extracted for using tactile feedback to aid navigation. The results of a qualitative evaluation with a prototype interface are also presented. Providing an absolute position input device and tactile feedback allowed the users to explore the graph using tactile and proprioceptive cues in a manner analogous to point-and-click techniques
    corecore