164 research outputs found

    Understanding complementary multi-layer collaborative heuristics for adaptive caching in heterogeneous mobile opportunistic networks

    Get PDF
    Current research aims to deal with emerging challenges of the opportunistic discovery of content stored in remote mobile publishers and the delivery to the subscribers in heterogeneous mobile opportunistic networks. Innovative network and service architectures leverage in-network caching to improve transmission efficiency, reduce delay and handle disconnections. In this paper, we investigate the influences of multi-dimensional heuristics utilised by our adaptive collaborative caching framework CafRepCache on the performance of content dissemination and query in heterogeneous mobile opportunistic environments. We consider the complementary multi-layer heuristics that combine social driven, resources driven, ego network driven and content popularity driven analytics. We extensively evaluate the performance of each complementary heuristic and discuss the impact of each one on every layer of our caching framework across heterogeneous real-world mobility, connectivity traces and use YouTube dataset for different workload and content popularity patterns. We show that the multilayer heuristics enable CafRepCache to be responsive to dynamically changing network topology, congestion avoidance and varying patterns of content publishers/subscribers which balances the trade-off that achieves higher cache hit ratio, delivery success ratios while keeping lower delays and packet loss

    Understanding complementary multi-layer collaborative heuristics for adaptive caching in heterogeneous mobile opportunistic networks

    Get PDF
    Current research aims to deal with emerging challenges of the opportunistic discovery of content stored in remote mobile publishers and the delivery to the subscribers in heterogeneous mobile opportunistic networks. Innovative network and service architectures leverage in-network caching to improve transmission efficiency, reduce delay and handle disconnections. In this paper, we investigate the influences of multi-dimensional heuristics utilised by our adaptive collaborative caching framework CafRepCache on the performance of content dissemination and query in heterogeneous mobile opportunistic environments. We consider the complementary multi-layer heuristics that combine social driven, resources driven, ego network driven and content popularity driven analytics. We extensively evaluate the performance of each complementary heuristic and discuss the impact of each one on every layer of our caching framework across heterogeneous real-world mobility, connectivity traces and use YouTube dataset for different workload and content popularity patterns. We show that the multilayer heuristics enable CafRepCache to be responsive to dynamically changing network topology, congestion avoidance and varying patterns of content publishers/subscribers which balances the trade-off that achieves higher cache hit ratio, delivery success ratios while keeping lower delays and packet loss

    Understanding complementary multi-layer collaborative heuristics for adaptive caching in heterogeneous mobile opportunistic networks

    Get PDF
    Current research aims to deal with emerging challenges of the opportunistic discovery of content stored in remote mobile publishers and the delivery to the subscribers in heterogeneous mobile opportunistic networks. Innovative network and service architectures leverage in-network caching to improve transmission efficiency, reduce delay and handle disconnections. In this paper, we investigate the influences of multi-dimensional heuristics utilised by our adaptive collaborative caching framework CafRepCache on the performance of content dissemination and query in heterogeneous mobile opportunistic environments. We consider the complementary multi-layer heuristics that combine social driven, resources driven, ego network driven and content popularity driven analytics. We extensively evaluate the performance of each complementary heuristic and discuss the impact of each one on every layer of our caching framework across heterogeneous real-world mobility, connectivity traces and use YouTube dataset for different workload and content popularity patterns. We show that the multilayer heuristics enable CafRepCache to be responsive to dynamically changing network topology, congestion avoidance and varying patterns of content publishers/subscribers which balances the trade-off that achieves higher cache hit ratio, delivery success ratios while keeping lower delays and packet loss

    Adaptive real-time predictive collaborative content discovery and retrieval in mobile disconnection prone networks

    Get PDF
    Emerging mobile environments motivate the need for the development of new distributed technologies which are able to support dynamic peer to peer content sharing, decrease high operating costs, and handle intermittent disconnections. In this paper, we investigate complex challenges related to the mobile disconnection tolerant discovery of content that may be stored in mobile devices and its delivery to the requesting nodes in mobile resource-constrained heterogeneous environments. We propose a new adaptive real-time predictive multi-layer caching and forwarding approach, CafRepCache, which is collaborative, resource, latency, and content aware. CafRepCache comprises multiple multi-layer complementary real-time distributed predictive heuristics which allow it to respond and adapt to time-varying network topology, dynamically changing resources, and workloads while managing complex dynamic tradeoffs between them in real time. We extensively evaluate our work against three competitive protocols across a range of metrics over three heterogeneous real-world mobility traces in the face of vastly different workloads and content popularity patterns. We show that CafRepCache consistently maintains higher cache availability, efficiency and success ratios while keeping lower delays, packet loss rates, and caching footprint compared to the three competing protocols across three traces when dynamically varying content popularity and dynamic mobility of content publishers and subscribers. We also show that the computational cost and network overheads of CafRepCache are only marginally increased compared with the other competing protocols

    CognitiveCharge: disconnection tolerant adaptive collaborative and predictive vehicular charging

    Get PDF
    Electric vehicles (EVs) are rapidly becoming more common and ownership is set to rise globally in coming years. The potential impacts of increased EVs on the electrical grid have been widely investigated and in its current state, existing grid infrastructure will struggle to meet the high demands at peak charging hours. The limited range of electric cars compounds this issue. We therefore propose CognitiveCharge, a novel approach to predictive and adaptive disconnection aware opportunistic energy discovery and transfer for the smart vehicular charging. CognitiveCharge detects and reacts to individual nodes and network regions which are at risk of getting depleted by using implicit predictive hybrid contact and resources congestion heuristics. CognitiveCharge exploits localised relative utility based approach to adaptively offload the energy from parts of the network with energy surplus to depleting areas with non-uniform depletion rates. We evaluate CognitiveCharge using a multi-day traces for the city of San Francisco, USA and Nottingham, UK to compare against existing infrastructure across a range of metrics. CognitiveCharge successfully eliminates congestion at both ad hoc and infrastructure charging points, reduces the time that a vehicle must wait to charge from the point at which it identifies as being in need of energy, and drastically reduces the total number of nodes in need of energy over the evaluation period

    Resource management for next generation multi-service mobile network

    Get PDF

    Comnet: Annual Report 2013

    Get PDF

    Tactful Networking: Humans in the Communication Loop

    Get PDF
    International audienceThis survey discusses the human-perspective into networking through the Tactful Networking paradigm, whose goal is to add perceptive senses to the network by assigning it with human-like capabilities of observation, interpretation, and reaction to daily-life features and associated entities. To achieve this, knowledge extracted from inherent human behavior in terms of routines, personality, interactions, and others is leveraged, empowering the learning and prediction of user needs to improve QoE and system performance while respecting privacy and fostering new applications and services. Tactful Networking groups solutions from literature and innovative interdisciplinary human aspects studied in other areas. The paradigm is motivated by mobile devices' pervasiveness and increasing presence as a sensor in our daily social activities. With the human element in the foreground, it is essential: (i) to center big data analytics around individuals; (ii) to create suitable incentive mechanisms for user participation; (iii) to design and evaluate both humanaware and system-aware networking solutions; and (iv) to apply prior and innovative techniques to deal with human-behavior sensing and learning. This survey reviews the human aspect in networking solutions through over a decade, followed by discussing the tactful networking impact through literature in behavior analysis and representative examples. This paper also discusses a framework comprising data management, analytics, and privacy for enhancing human raw-data to assist Tactful Networking solutions. Finally, challenges and opportunities for future research are presented

    Comnet: Annual Report 2012

    Get PDF
    • …
    corecore