8 research outputs found

    Underlay Device-to-Device Communications on Multiple Channels

    Get PDF
    Author´s accepted manuscript (postprint).© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Since the spectral efficiency of wireless communications is already close to its fundamental bounds, a significant increase in spatial efficiency is required to meet future traffic demands. Device-to-device (D2D) communications provide such an increase by allowing nearby users to communicate directly without passing their packages through the base station. To fully exploit the benefits of this paradigm, proper channel assignment and power allocation algorithms are required. The main limitation of existing schemes, which restrict D2D transmitters to operate on a single channel at a time, is circumvented by the joint channel assignment and power allocation algorithm proposed in this paper. This algorithm relies on convex relaxation to efficiently obtain nearlyoptimal solutions to the mixed-integer program arising in this context. Numerical experiments corroborate the merits of the proposed scheme relative to state-of-the art alternatives.acceptedVersio

    Non-convex Optimization for Resource Allocation in Wireless Device-to-Device Communications

    Get PDF
    Device-to-device (D2D) communication is considered one of the key frameworks to provide suitable solutions for the exponentially increasing data tra c in mobile telecommunications. In this PhD Thesis, we focus on the resource allocation for underlay D2D communications which often results in a non-convex optimization problem that is computationally demanding. We have also reviewed many of the works on D2D underlay communications and identi ed some of the limitations that were not handled previously, which has motivated our works in this Thesis. Our rst works focus on the joint power allocation and channel assignment problem in the D2D underlay communication scenario for a unicast single-input and single-output (SISO) cellular network in either uplink or downlink spectrums. These works also consider several degrees of uncertainty in the channel state information (CSI), and propose suitable measures to guarantee the quality of service (QoS) and reliability under those conditions. Moreover, we also present a few algorithms that can be used to jointly assign uplink and downlink spectrum to D2D pairs. We also provide methods to decentralize those algorithms with convergence guarantees and analyze their computational complexity. We also consider both cases with no interference among D2D pairs and cases with interference among D2D pairs. Additionally, we propose the formulation of an optimization objective function that combines the network rate with a penalty function that penalizes unfair channel allocations where most of the channels are assigned to only a few D2D pairs. The next contributions of this Thesis focus on extending the previous works to cellular networks with multiple-input and multiple-output (MIMO) capabilities and networks with D2D multicast groups. We also present several methods to accommodate various degrees of uncertainty in the CSI and also guarantee di erent measures of QoS and reliability. All our algorithms are evaluated extensively through extensive numerical experiments using the Matlab simulation environment. All of these results show favorable performance, as compared to the existing state-of-the-art alternatives.publishedVersio

    Robust Transmit Beamforming for Underlay D2D Communications on Multiple Channels

    Get PDF
    Author´s accepted manuscript (postprint).© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.publishedVersio

    Reliable Multicast D2D Communication over Multiple Channels in Underlay Cellular Networks

    Get PDF
    Author's accepted manuscript© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Multicast device-to-device (D2D) communications operating underlay with cellular networks is a spectral efficient technique for disseminating data to the nearby receivers. However, due to critical challenges such as, mitigating mutual interference and unavailability of perfect channel state information (CSI), the resource allocation to multicast groups needs significant attention. In this work, we present a framework for joint channel assignment and power allocation strategy to maximize the sum rate of the combined network. The proposed framework allows access of multiple channels to the multicast groups, thus improving the achievable rate of the individual groups. Furthermore, fairness in allocating resources to the multicast groups is also ensured by augmenting the objective with a penalty function. In addition, considering imperfect CSI, the framework guarantees to provide rate above a specified outage for all the users. The formulated problem is a mixed integer nonconvex program which requires exponential complexity to obtain the optimal solution. To tackle this, we first introduce auxiliary variables to decouple the original problem into smaller power allocation problems and a channel assignment problem. Next, with the aid of fractional programming via a quadratic transformation, we obtain an efficient power allocation solution by alternating optimization. The solution for channel assignment is obtained by convex relaxation of integer constraints. Finally, we demonstrate the merit of the proposed approach by simulations, showing a higher and a more robust network throughput. Index Terms—D2D multicast communications, resource allocation, imperfect CSI, fractional programming.acceptedVersio

    Survey on the state-of-the-art in device-to-device communication: A resource allocation perspective

    Get PDF
    Device to Device (D2D) communication takes advantage of the proximity between the communicating devices in order to achieve efficient resource utilization, improved throughput and energy efficiency, simultaneous serviceability and reduced latency. One of the main characteristics of D2D communication is reuse of the frequency resource in order to improve spectral efficiency of the system. Nevertheless, frequency reuse introduces significantly high interference levels thus necessitating efficient resource allocation algorithms that can enable simultaneous communication sessions through effective channel and/or power allocation. This survey paper presents a comprehensive investigation of the state-of-the-art resource allocation algorithms in D2D communication underlaying cellular networks. The surveyed algorithms are evaluated based on heterogeneous parameters which constitute the elementary features of a resource allocation algorithm in D2D paradigm. Additionally, in order to familiarize the readers with the basic design of the surveyed resource allocation algorithms, brief description of the mode of operation of each algorithm is presented. The surveyed algorithms are divided into four categories based on their technical doctrine i.e., conventional optimization based, Non-Orthogonal-MultipleAccess (NOMA) based, game theory based and machine learning based techniques. Towards the end, several open challenges are remarked as the future research directions in resource allocation for D2D communication

    Underlay Device-to-Device Communications on Multiple Channels

    Get PDF
    Since the spectral efficiency of wireless communications is already close to its fundamental bounds, a significant increase in spatial efficiency is required to meet future traffic demands. Device-to-device (D2D) communications provide such an increase by allowing nearby users to communicate directly without passing their packages through the base station. To fully exploit the benefits of this paradigm, proper channel assignment and power allocation algorithms are required. The main limitation of existing schemes, which restrict D2D transmitters to operate on a single channel at a time, is circumvented by the joint channel assignment and power allocation algorithm proposed in this paper. This algorithm relies on convex relaxation to efficiently obtain nearlyoptimal solutions to the mixed-integer program arising in this context. Numerical experiments corroborate the merits of the proposed scheme relative to state-of-the art alternatives

    Reliable Underlay Device-to-Device Communications on Multiple Channels

    Get PDF
    Author's accepted manuscript (postprint).© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.acceptedVersio
    corecore