34 research outputs found

    Structured Peer-to-Peer Overlay Deployment on MANET: A Survey

    Get PDF
    There are many common characteristics between Peer-to-Peer (P2P) overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, dynamicity and changing topology are the most shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality, and their routing information can complement that of MANET. MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. The aim of this paper is to survey current P2P over MANET systems. Specifically, this paper focuses on and investigates structured P2P over MANET. Overall, more than thirty distinct approaches have been classified into groups and introduced in tables providing a structured overview of the area. The survey addresses the identified approaches in terms of P2P systems, MANET underlay systems and the performance of the reviewed systems

    MOSAIC: Unified Platform for Dynamic Overlay Selection and Composition

    Get PDF
    MOSAIC constructs new overlay networks with desired characteristics by composing existing overlays with subsets of those attributes. Thus, MOSAIC overcomes the problem of multiple network infrastructures that are partial solutions, while preserving deployability. Composition of control and/or data planes is possible in the system. MOSAIC overlays are specified in Mozlog, a declarative language that specifies overlay properties without binding them to a particular implementation or underlying network. This paper focuses on the runtime aspects of MOSAIC: how it enables interoperability between different overlay networks and how it implements switching between different overlay compositions, permitting dynamic compositions with both existing overlay networks and legacy applications. The system is validated experimentally using declarative overlay compositions concisely specified in Mozlog: an indirection overlay that supports mobility (i3), a resilient overlay (RON), and scalable lookups (Chord), all of which are combined to provide new functionality. MOSAIC provides the benefits of runtime composition to simultaneously deliver application-aware mobility, NAT traversal and reliability with low performance overhead, demonstrated by measurements on both a local cluster and PlanetLab

    A one hop overlay system for Mobile Ad Hoc Networks

    Get PDF
    Peer-to-Peer (P2P) overlays were initially proposed for use with wired networks. However, the very rapid proliferation of wireless communication technology has prompted a need for adoption of P2P systems in mobile networks too. There are many common characteristics between P2P overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, a dynamic nature and changing topology are the most commonly shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality and MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. P2P overlay networks can be deployed over MANET to address content discovery issues. However, previous research has shown that deploying P2P systems straight over MANET does not exhibit satisfactory performance. Bandwidth limitation, limited resources and node mobility are some of the key constraints. This thesis proposes a novel approach, OneHopOverlay4MANET, to exploit the synergies between MANET and P2P overlays through cross-layering. It combines Distributed Hash Table (DHT) based structured P2P overlays with MANET underlay routing protocols to achieve one logical hop between any pair of overlay nodes. OneHopOverlay4MANET constructs a cross-layer channel to permit direct exchange of routing information between the Application layer, where the overlay operates, and the MANET underlay layer. Consequently, underlay routing information can be shared and used by the overlay. Thus, OneHopOverlay4MANET reduces the typical management traffic when deploying traditional P2P systems over MANET. Moreover, as a result of building one hop overlay, OneHopOverlay4MANET can eliminate the mismatching issue between overlay and underlay and hence resolve key lookups in a short time, enhancing the performance of the overlay. v In this thesis, we present OneHopOverlay4MANET and evaluate its performance when combined with different underlay routing protocols. OneHopOverlay4MANET has been combined with two proactive underlays (OLSR and BATMAN) and with three reactive underlay routing protocols (DSR, AODV and DYMO). In addition, the performance of the proposed system over OLSR has been compared to two recent structured P2P over MANET systems (MA-SP2P and E-SP2P) that adopted OLSR as the routing protocol. The results show that better performance can be achieved using OneHopOverlay4MANET

    Structured Peer-to-Peer Overlays for NATed Churn Intensive Networks

    Get PDF
    The wide-spread coverage and ubiquitous presence of mobile networks has propelled the usage and adoption of mobile phones to an unprecedented level around the globe. The computing capabilities of these mobile phones have improved considerably, supporting a vast range of third party applications. Simultaneously, Peer-to-Peer (P2P) overlay networks have experienced a tremendous growth in terms of usage as well as popularity in recent years particularly in fixed wired networks. In particular, Distributed Hash Table (DHT) based Structured P2P overlay networks offer major advantages to users of mobile devices and networks such as scalable, fault tolerant and self-managing infrastructure which does not exhibit single points of failure. Integrating P2P overlays on the mobile network seems a logical progression; considering the popularities of both technologies. However, it imposes several challenges that need to be handled, such as the limited hardware capabilities of mobile phones and churn (i.e. the frequent join and leave of nodes within a network) intensive mobile networks offering limited yet expensive bandwidth availability. This thesis investigates the feasibility of extending P2P to mobile networks so that users can take advantage of both these technologies: P2P and mobile networks. This thesis utilises OverSim, a P2P simulator, to experiment with the performance of various P2P overlays, considering high churn and bandwidth consumption which are the two most crucial constraints of mobile networks. The experiment results show that Kademlia and EpiChord are the two most appropriate P2P overlays that could be implemented in mobile networks. Furthermore, Network Address Translation (NAT) is a major barrier to the adoption of P2P overlays in mobile networks. Integrating NAT traversal approaches with P2P overlays is a crucial step for P2P overlays to operate successfully on mobile networks. This thesis presents a general approach of NAT traversal for ring based overlays without the use of a single dedicated server which is then implemented in OverSim. Several experiments have been performed under NATs to determine the suitability of the chosen P2P overlays under NATed environments. The results show that the performance of these overlays is comparable in terms of successful lookups in both NATed and non-NATed environments; with Kademlia and EpiChord exhibiting the best performance. The presence of NATs and also the level of churn in a network influence the routing techniques used in P2P overlays. Recursive routing is more resilient to IP connectivity restrictions posed by NATs but not very robust in high churn environments, whereas iterative routing is more suitable to high churn networks, but difficult to use in NATed environments. Kademlia supports both these routing schemes whereas EpiChord only supports the iterating routing. This undermines the usefulness of EpiChord in NATed environments. In order to harness the advantages of both routing schemes, this thesis presents an adaptive routing scheme, called Churn Aware Routing Protocol (ChARP), combining recursive and iterative lookups where nodes can switch between recursive and iterative routing depending on their lifetimes. The proposed approach has been implemented in OverSim and several experiments have been carried out. The experiment results indicate an improved performance which in turn validates the applicability and suitability of ChARP in NATed environments

    Study of the Topology Mismatch Problem in Peer-to-Peer Networks

    Get PDF
    The advantages of peer-to-peer (P2P) technology are innumerable when compared to other systems like Distributed Messaging System, Client-Server model, Cloud based systems. The vital advantages are not limited to high scalability and low cost. On the other hand the p2p system suffers from a bottle-neck problem caused by topology mismatch. Topology mismatch occurs in an unstructured peer-to-peer (P2P) network when the peers participating in the communication choose their neighbors in random fashion, such that the resultant P2P network mismatches its underlying physical network, resulting in a lengthy communication between the peers and redundant network traffics generated in the underlying network[1] However, most P2P system performance suffers from the mismatch between the overlays topology and the underlying physical network topology, causing a large volume of redundant traffic in the Internet slowing the performance. This paper surveys the P2P topology mismatch problems and the solutions adapted for different applications

    A novel DHT Routing Protocol for MANETs

    Get PDF
    The central challenge in Mobile Ad hoc Networks (MANETs) is to provide a stable routing strategy without depending on any central administration. This work presents and examines the working of Radio Ring Routing Protocol (RRRP), a DHT based routing protocol for MANETs inspired from structured overlays in the internet. This design joins effort in answering the fundamental question of efficiency of a DHT substrate compared to conventional routing in ad hoc networks

    Shortcuts through Colocation Facilities

    Full text link
    Network overlays, running on top of the existing Internet substrate, are of perennial value to Internet end-users in the context of, e.g., real-time applications. Such overlays can employ traffic relays to yield path latencies lower than the direct paths, a phenomenon known as Triangle Inequality Violation (TIV). Past studies identify the opportunities of reducing latency using TIVs. However, they do not investigate the gains of strategically selecting relays in Colocation Facilities (Colos). In this work, we answer the following questions: (i) how Colo-hosted relays compare with other relays as well as with the direct Internet, in terms of latency (RTT) reductions; (ii) what are the best locations for placing the relays to yield these reductions. To this end, we conduct a large-scale one-month measurement of inter-domain paths between RIPE Atlas (RA) nodes as endpoints, located at eyeball networks. We employ as relays Planetlab nodes, other RA nodes, and machines in Colos. We examine the RTTs of the overlay paths obtained via the selected relays, as well as the direct paths. We find that Colo-based relays perform the best and can achieve latency reductions against direct paths, ranging from a few to 100s of milliseconds, in 76% of the total cases; 75% (58% of total cases) of these reductions require only 10 relays in 6 large Colos.Comment: In Proceedings of the ACM Internet Measurement Conference (IMC '17), London, GB, 201

    Management of Temporally and Spatially Correlated Failures in Federated Message Oriented Middleware for Resilient and QoS-Aware Messaging Services.

    Get PDF
    PhDMessage Oriented Middleware (MOM) is widely recognized as a promising solution for the communications between heterogeneous distributed systems. Because the resilience and quality-of-service of the messaging substrate plays a critical role in the overall system performance, the evolution of these distributed systems has introduced new requirements for MOM, such as inter domain federation, resilience and QoS support. This thesis focuses on a management frame work that enhances the Resilience and QoS-awareness of MOM, called RQMOM, for federated enterprise systems. A common hierarchical MOM architecture for the federated messaging service is assumed. Each bottom level local domain comprises a cluster of neighbouring brokers that carry a local messaging service, and inter domain messaging are routed through the gateway brokers of the different local domains over the top level federated overlay. Some challenges and solutions for the intra and inter domain messaging are researched. In local domain messaging the common cause of performance degradation is often the fluctuation of workloads which might result in surge of total workload on a broker and overload its processing capacity, since a local domain is often within a well connected network. Against performance degradation, a combination of novel proactive risk-aware workload allocation, which exploits the co-variation between workloads, in addition to existing reactive load balancing is designed and evaluated. In federated inter domain messaging an overlay network of federated gateway brokers distributed in separated geographical locations, on top of the heterogeneous physical network is considered. Geographical correlated failures are threats to cause major interruptions and damages to such systems. To mitigate this rarely addressed challenge, a novel geographical location aware route selection algorithm to support uninterrupted messaging is introduced. It is used with existing overlay routing mechanisms, to maintain routes and hence provide more resilient messaging against geographical correlated failures

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Integrating Wireless Sensor Networks and Mobile Ad-hoc NETworks for enhanced value-added services

    Get PDF
    In some situations where the standard telecommunication infrastructure is not available, Mobile Ad hoc NETworks (MANETs) can be deployed to provide the required communication. These networks are established "on the fly" without a need for prior communication organization and are composed of autonomous mobile devices, such as cell phones, PDAs or laptops. In similar conditions, such as in emergency response operations, integrating MANETs and Wireless Sensor Networks (WSNs) can notably enhance the MANET participant's end-user experience. WSNs sense and aggregate ambient information, such as physiological, environmental or physical data related to a nearby phenomenon. The integration, which provides end-user availability to WSN required information, is feasible via gateways. However, when the ambient information collected by WSNs is intended for applications residing in MANETs, centralized and fixed gateways are not practicably feasible. This is mainly due to ad-hoc nature, lack of centralized control and constraints on the end-user devices that are used in MANETs. These devices are usually limited in power and capacity and cannot host centralized gateways. In this thesis we exploit the integration of WSN and MANET in order to provide novel value-added services which enhance the end-user experience of MANET participants. Motivating scenarios are introduced, background information is presented, requirements are derived and the state of the art regarding the integration of WSN with existing networks, including MANETs, is evaluated. Based on the evaluation, none of the existing solutions satisfies all of our derived requirements. Therefore, we propose an overall two-level overlay architecture to integrate WSNs (with mobile sinks) and MANETs. This architecture is based on the distributed gateway and applications which form the P2P overlays. Overlays are application-layer networks which are created on top of the exiting MANET. To interconnect gateway and application overlays we derive corresponding requirements and evaluate the existing approaches. Since none of these approaches fulfills all of our requirements, we propose protocols, mechanisms and design corresponding modules for the interconnection of overlays. Finally we refine our overall architecture based on the interconnection aspects. As a proof of concept, we implement a prototype for the inter-overlay information exchange. This implementation is based on SIP extensions and uses two existing P2P middlewares. We also simulate our prototype using Oversim simulation tool and collect experimental results. Based on these results, we can see that our architecture is a valid and promising approach for interconnecting different P2P overlays and can be deployed to provide the overall solution for WSN and MANET integrated system
    corecore