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MOSAIC: Unified Platform for Dynamic Overlay Selection and Composition

Yun Mao Boon Thau Loo Zachary Ives Jonathan M. Smith
University of Pennsylvania

ABSTRACT
MOSAIC constructs new overlay networks with desired char-
acteristics by composing existing overlays with subsets of
those attributes. Thus, MOSAIC overcomes the problem
of multiple network infrastructures that are partial solutions,
while preserving deployability. Composition of control and/or
data planes is possible in the system. MOSAIC overlays
are specified in Mozlog, a declarative language that speci-
fies overlay properties without binding them to a particular
implementation or underlying network.

This paper focuses on the runtime aspects of MOSAIC:
how it enables interoperability between different overlay net-
works and how it implements switching between different
overlay compositions, permitting dynamic compositions with
both existing overlay networks and legacy applications. The
system is validated experimentally using declarative over-
lay compositions concisely specified in Mozlog: an indi-
rection overlay that supports mobility (i3), a resilient over-
lay (RON), and scalable lookups (Chord), all of which are
combined to provide new functionality. MOSAIC provides
the benefits of runtime composition to simultaneously de-
liver application-aware mobility, NAT traversal and reliabil-
ity with low performance overhead, demonstrated by mea-
surements on both a local cluster and PlanetLab.

1. INTRODUCTION
The Internet faces new challenges, ranging from unwanted

or harmful traffic to the increasing complexity and fragility
of inter-domain routing. At the same time, new applica-
tions demand evolution for new capabilities such as mobility,
content-based routing, and quality-of-service (QoS) routing.
Overlay networks [19, 20] use the existing Internet to pro-
vide connectivity for new services, and permit deployable
network evolution, while in some cases continuing to sup-
port legacy functionality [8].

Overlay networks have not, however, addressed the full
set of challenges and evolutionary needs. We argue this is
due to the lack of inter-operability among different overlays.
Most overlays are targeted at vertical domains (e.g., mobil-
ity [30, 17], security [10], reliability [1]). However, many
emerging applications and application domains have needs
that are difficult to address using a single overlay. We illus-
trate an example usage scenario:

EXAMPLE 1.1. Alice and Bob use private networks be-
hind separate NATs, and wish to communicate regularly via
VoIP or video conferencing, occasionally sharing data from
internal web servers with trusted friends. As Alice and Bob
travel regularly, and their IP addresses change, continued

contact and communications should be seamless.

Alice and Bob can use a combination of i3 [25] for NAT
traversal, ROAM [30] for mobility, RON [1] for reliability,
and if DoS attack prevention is important, a secure overlay
such as SOS [10] can be added. One may argue that a custom
overlay such as Skype [24] may address some of the needs
of Alice and Bob. However, a monolithic approach does not
easily accommodate future application needs and changing
network conditions. For example, RON may be excessive for
a network with limited failures, and hence it may be desir-
able to remove it; whereas, in a partially-connected network,
epidemic routing [26] would be desired. Further, Alice and
Bob may require session-layer mobility support, hence re-
quiring DHARMA [17] instead of ROAM.

In this paper, we propose MOSAIC 1, a unified system that
provides a declarative framework for developing, deploying,
combining, and composing overlay networks — one capable
of bridging between overlays, stacking them in layers, dy-
namically changing the layers or bridges, and allowing for
rapid extensibility with new functionalities. It enables (1)
rapid authoring and deployment of new overlay networks,
(2) dynamic adaptivity to select and compose overlay net-
works to meet changing application needs, and (3) seamless
support for legacy applications within the infrastructure.

This approach enables modular reuse of resources and
functions. It also facilitates rapid experimentation and the
deployment of new network features. This is a major step
forward compared with existing hand-coded approaches [8]
for manually bridging amongst different overlays.

MOSAIC is based on declarative networking [14, 13], a
declarative, database-inspired extensible infrastructure using
query languages to specify behavior. Declarative program-
ming allow programmers to say “what” they want, without
worrying about the details of “how” to achieve it. This pro-
gramming paradigm makes it easy to compose protocols,
either vertically (layering) or horizontally (bridging), since
composition is largely confined to the “what”, while compo-
sition of the “how” can be automated. It also provides better
language and runtime support for dynamic adaption.

In MOSAIC, overlay compositions are specified in a high-
level specification language, which is then further compiled
into the Mozlog declarative networking language that defines
the composed network protocols. Unlike previous declara-
tive networking languages, Mozlog provides several novel

1A mosaic is a larger pattern or picture constructed with small
pieces of colored glass, stone, or other material. MOSAIC echoes
this in composing useful overlay services from existing overlay
components.
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language features essential for dynamic composition: dy-
namic location specifiers, combined with runtime types, en-
able flexible naming and addressing; composable virtual views
support modularity and composability; data and control plane
extensibility supports composition; declarative tunneling and
proxying enable support for legacy applications.

Our ultimate vision of automatically and dynamically com-
posing overlays is a challenging one and well beyond the
scope of a single paper. We do not propose that MOSAIC
in its current form can serve as a “drop-in” replacement for
existing network infrastructures. In particular, our work pro-
vides the framework, but postpones addressing interesting
challenges in automatic composition and overlay network
feature interactions to future work. Our work is best viewed
as a building block and step towards the grander agenda of
intelligent, self-tuning networks [4].

Organization: Section 2 describes the options for overlay
composition. Section 3 presents an architectural overview of
the MOSAIC infrastructure. Section 4 summarizes the as-
pects of Mozlog important to MOSAIC. Section 5 illustrates
the process of generating composition in Mozlog and use ex-
amples. In Section 6, we demonstrate how Mozlog specifi-
cations can be executed within a distributed query processor
via modifications to the P2 declarative networking system.
In Section 7, measurement results are presented for networks
created on a local cluster and the PlanetLab testbed. We
show that MOSAIC’s ability to support dynamic, flexible
compositions can enable application-aware mobility, flexi-
bility, and resilience with low overhead.

2. OVERLAY COMPOSITION
Network composition is the act of combining distinct parts

or elements of existing networks to create a new network
with new functionalities. Overlay composition is network
composition of overlay networks, and so results in a new
overlay network. MOSAIC facilitates composition of over-
lays along two planes.
Data plane composition. The data planes of two overlay
networks can be composed horizontally by bridging between
the networks, or they can be composed vertically by layering
one overlay over the other.
Data plane composition 1: bridgingData plane composition 1: bridging

Network3
(QoS)

S d
IP tunnel

Receiver B

Network2

Network1
(confidentiality)

Sender

Receiver A
Network2

(reliability)

( y)

Figure 1: Overlay composition by bridging.

In bridging (see Figure 1), each overlay network runs on
top of the same substrate (e.g., the IP network) directly. How-
ever, for a variety of reasons (e.g., sending from a wireless
to a wired network), it may be necessary to send a packet

across multiple overlay networks to reach the receiver. This
is usually done via a gateway node that belongs to both net-
works. If such gateways do not exist, two nodes from each
network need to be connected via an IP tunnel to route pack-
ets. In Figure 1, a sending laptop using wireless may use an
overlay that provides confidentiality to route traffic over the
wireless links, then use an overlay with reliability guarantees
to deliver important but not time-sensitive data to receiver A,
while using a QoS overlay to deliver multimedia traffic to re-
ceiver B.
Data plane composition 2: layering

i3 router

Sender
RON

Receiver
(1 hop 

from sender)

Receiver
(behind NAT)

Sender

i3

Figure 2: Overlay composition by layering.

In layering, logically a packet is routed within a single
data plane of an existing overlay network. However, the
data paths between the nodes inside the overlay may be con-
structed on top of other overlay networks, rather than IP.
For example, RON only works for nodes that have publicly
routable IP addresses. As shown in Figure 2, by composing
RON on top of another overlay protocol that enables NAT
traversal, such as i3, nodes behind NAT should be able to
join the RON network.

We note that the two data plane compositions listed above
are not mutually exclusive; some data composition scenarios
may combine both layering and bridging. Prior attempts to
combine overlay networks [8] only support bridging but not
layering, yet layering is a powerful composition primitive
that enhances individual overlay network nodes with multi-
ple new services.
Control plane composition. One overlay network’s control
plane may be layered over either the data plane or the con-
trol plane of another overlay. For example, it is possible to
build the control message channels of DHT protocols such as
Chord over the data plane of RON. Typically, the failure de-
tection components of DHTs assume that hosts unreachable
via IP are dead. In fact, some hosts may be alive and func-
tioning, but temporary network routing failures may create
the illusion of node failure to part of the overlay nodes. If the
network failures occur intermittently, churn rate is increased
and may create unnecessary state inconsistency [7]. Using
a resilient overlay such as RON can overcome some of the
network failures and reduce churn.

Some overlay network protocols have complex, layered
control planes. For example, both i3 and DOA [2] use DHTs
for either forwarding or lookup. RON and OverQoS heav-
ily depend on measurements of underlying network perfor-
mance characteristics such as latency and bandwidth. When
overlay networks are built from scratch over IP, it is conceiv-
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able that different logical overlays built on the same physi-
cal IP topology may duplicate the effort to maintain DHTs
or perform network measurements. Nakao, et al. [18], ob-
served that on PlanetLab, each node had 1GB outgoing ping
traffic daily: many overlay networks running on the same
node were probing the same set of hosts without coordina-
tion. Such duplicated probing traffic can be wasteful, and in-
teractions between probe traffic may introduce measurement
error. A composition-driven approach is to build smaller ele-
ments that provide well defined interfaces (e.g., OpenDHT [22]
for DHT lookup and iPlane [15] for measurement) so that
they can be easily composed with upper layer overlay net-
work control planes to share rather than compete for resources.

3. MOSAIC OVERVIEW

Overlay 2
Specificationsend

Transport Layer

recvOverlay 1
Specification Specification

Overlay 1 Overlay 2
Specification

IP

N t k L i MOSAIC

dataflow

tables

dataflowdataflow

tablestables

Compiler Compiler

Network Layer in MOSAIC

Figure 3: An overview of the MOSAIC architecture for
network layer overlays.

In this section, we provide an overview of MOSAIC, and
describe how MOSAIC provides a framework for compos-
ing and re-composing overlay networks. Note that we do not
currently tackle the issue of determining the compositions,
but rather provide the overlay composition specification and
implementation framework.

Figure 3 illustrates the MOSAIC architecture from the
perspective of a single node. MOSAIC is positioned at the
network layer in the network stack to replace IP. It exposes
a simple interface to the transport layer by providing two
primitives: send(DestAddress, Packet) and recv(Packet).
In IP, a packet consists of an IP header with fixed format
and a raw byte data as the payload. In MOSAIC, Packet
is represented abstractly as a structured data element, which
might be a set of scalar values or even nested tuples. The
encoding of this packet is up to the specific overlay proto-
col, and declarative mappings or transformations can convert
between the packet formats of different overlays (see Sec-
tion 4). DestAddress is a specially typed tuple, with the first
attribute being the identifier of the overlay network to which
the packet belongs. This identifier is used to demultiplex the
send requests to different overlays or IP at the network layer.
A send request will trigger a recv event at the node or nodes
who own the DestAddress if the network successfully routes
the packet.

MOSAIC is intended to be deployed as a composition ser-
vice on a shared overlay infrastructure where all nodes run

the MOSAIC engine. On this infrastructure, several overlay
networks will co-exist, and new overlay networks will be in-
stantiated by users by leveraging existing deployed overlays,
either by layering (above or below) or bridging with them. In
addition, private networks outside of the infrastructure will
be bridged via public gateways with overlays deployed on
this infrastructure.

3.1 Composition Specifications
To create a new overlay network, a user of this platform (a

network administrator) creates a composition specification,
which is a high-level graph-based description of the desired
component overlay networks and their interactions. These
specifications can be expressed in standard semi-structured
graph-based representations such as XML2.

The specification is then compiled into the Mozlog lan-
guage used by MOSAIC’s runtime system, described in Sec-
tion 4. As part of this process, new code is created that
“glues” the compositions together. Since the composition
glue code is written in Mozlog, it is most natural to imple-
ment each composed overlay as a declarative network in Mo-
zlog. However, MOSAIC can also support legacy overlays
with the use of an adapter (see Section 6.2).

The declarative approach provides major benefits. First,
the high-level composition specifications allow one to rea-
son about properties and check correctness constraints on
the overlay compositions. Our use of the Mozlog language
as the underlying implementation framework provides the
traditional benefits of declarative networks in terms of its
compactness and safety.
Dynamic compositions. In addition, MOSAIC exploits the
Mozlog’s declarative nature to facilitate dynamic composi-
tion for certain overlays and applications: since network
definitions in MOSAIC separate specification from imple-
mentation, the system can (assuming the right constraints
are met) freely replace either the IP or an existing overlay
underneath one overlay network with a second overlay net-
work — i.e., it can layer networks. For example, the proto-
col used in RON is a modified link-state protocol, which is
general enough to operate on any connected graph. The orig-
inal RON implementation assumes IPv4 as a substrate, and
hence it is hard-coded to use publicly routable IP addresses.
In MOSAIC, protocols are written with a network-agnostic
addressing scheme, so a RON overlay can instead use ad-
dresses from one or more lower-level overlay networks, pro-
vided they are reachable from one another. This allows MO-
SAIC to dynamically switch an existing overlay’s underlay
based on the network conditions, e.g., an executing overlay
that utilizes IP can dynamically layer itself over RON when
routing losses are high, or further switch to an epidemic rout-

2Syntactically XML is a tree, but it encodes graphs through the
use of references. We adopted XML due to widely available tools
for querying XML data, but other graph-based specifications are
applicable. One may also utilize a graphical tool to design and then
generate the specifications
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ing [26] strategy when the network is disconnected.
Restrictions on dynamic switching. Dynamic overlay switch-
ing in MOSAIC is achieved by changing the binding be-
tween an upper overlay’s logical addresses and the underly-
ing network and its (lower-level) addresses. This technique
is overlay-agnostic — however, we must be careful to pre-
serve application and overlay semantics. In particular, if dy-
namically switching maintains the same endpoints on route
requests (as RON, above, does), then the switch is permis-
sible. Likewise, if the lower overlay state is not visible to
the layers above, and all endpoints provide the same func-
tionality (e.g., in a content distribution network), then again
the switch is permissible. In other cases, we would need to
re-architect the overlays and possibly the application to re-
distribute state over the new underlay, and to be tolerant of
transient states where data is moving.

i3

Bob’s internal 

networkRON Bob’s 

gateway

Alice’s internal 

network

Alice’s 

gateway

Figure 4: Graph of i3 layered over RON, and private net-
works of Alice and Bob bridged with RON. See Appendix
A for the XML specification.

Figure 4 shows a graphical representation of a compo-
sition specification, based on the example scenario intro-
duced in Section 1. Each module (node) represents a com-
ponent overlay network (e.g., i3 and RON) deployed on the
infrastructure, or a private network (AliceNet and BobNet).
The links represent connectors, where vertical and horizon-
tal links denote layering and bridging, respectively. Here
the i3 overlay is layered over RON; Alice and Bob’s private
networks are bridged to the RON overlay. In addition to
a unique overlay identifier, each module configuration con-
tains the following information:

• Physical node constraints: When the overlay is first
deployed, the user who created the overlay can con-
strain the set of nodes on which the overlay may ex-
ecute. This can be in the form of a prefix to indicate
that nodes must be deployed on particular subnets, or
enforce the inclusion of particular nodes (e.g.Alice’s
and Bob’s gateways) must be on both the i3 and RON
networks.

• Attributes: Each overlay network has properties that
characterize its capabilities, including mobility, secure
routing, NAT traversal, resilient routing, anonymity,
private networks, etc. These properties can be queried
by users to identify overlays that meet their require-
ments.

• Code: If a module is loaded for the first time, code
can be included in the configuration. This can either be
legacy code, or Mozlog specifications for declarative
networks.

• Default gateway: Each module can specify a default
gateway for bridging. In the absence of a specified
gateway, the composition server will determine a com-
mon node to serve as the gateway.

• Access control: MOSAIC supports restrictions on
which users can utilize an overlay, and their privileges
(e.g., layering above or below, and bridging, etc.).

The connectors between modules have properties asso-
ciated with them. Bridging (horizontal lines) must specify
whether there are default gateways to be used, and whether
tunnelling is permitted. If two modules are specified to be
bridged via a default gateway node, both overlays must run
on the specified gateway. Otherwise, the composition server
will designate a common node to serve as the gateway. Lay-
ering (vertical lines) also has constraints on whether the over-
lay has to be layered on all or subset of the nodes. In this
example, to get the full benefits of RON, all i3 nodes should
utilize RON as their underlay. However, this is not strictly
required: i3 nodes that do not run RON will default to using
IP. For both bridging and layering, one can further specify
whether some connections replace existing ones.

One of the advantages of using high-level composition
specifications is the potential for correctness checks and for
making inferences about the compositions’ attributes — and
especially for reasoning about feature interactions among
different overlays. For example, an insecure overlay when
bridged with a secure overlay will result in an end-to-end
insecure overlay. A scalable lookup overlay will increase
its robustness when executing over a resilient overlay, at the
expense of its performance.

3.2 Composition Server
The composition server serves two important roles. As

part of the process of creating a composition specification,
the user may issue queries to the composition server, search-
ing for existing overlays that meet their criteria for composi-
tion. For each overlay, the composition server maintains the
following information:

• A unique identifier for the overlay assigned by the com-
position server.

• The list of physical nodes that are currently executing
the overlay.

• The list of users who can utilize each overlay, and their
privileges (e.g., whether they can bridge with this over-
lay). These privileges are set by an overlay’s owner.

• Additional meta-data that describes the overlay, such
as its attributes, node constraints, etc. This information
can be used by the user to query for overlays based on
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attributes, and for the composition server to check each
composition for correctness.

The second role of the composition server is as the com-
piler of composition specifications. Here, the various over-
lays’ definitions are deployed, along with Mozlog glue code
that links and layers the different protocols.

3.3 Composition Compilation
The compilation process can be performed in four dif-

ferent ways. First, a composition can create overlays from
scratch, where each module contains the code implement-
ing each overlay. Second, in the incremental composition
mechanism, existing compositions can be extended, e.g.., by
adding new overlays over existing ones, or bridging over-
lays via identified gateways. This requires the composition
specifications to refer to existing overlays by their unique
identifiers. Third, the source bridging mechanism involves
setting up source routes for bridging different overlay net-
works. Fourth, the delta mechanism involves replacing ex-
isting modules with new ones, and this requires connectors
to indicate that they are replacing existing links.

Given the above mechanisms, we describe how layering
and bridging can be achieved by compiling modules and
connectors. We defer describing the actual Mozlog code to
the next section, but focus first on the functionality. The first
step is to perform basic checks to ensure all the links are
legal, based on the attribute constraints and physical node
constraints. E.g., one cannot layer one overlay over another
if they are configured for completely disjoint sets of nodes.
Two overlays cannot be bridged if their bridge connector
does not permit tunnelling and the two overlays do not share
any common node. Once validated, Mozlog rules for compo-
sition and all required overlay code are uploaded to relevant
nodes for execution.

3.3.1 Layering
Layering of a control or data plane over another overlay’s

data plane is achieved by ensuring that every protocol uses
logical addresses — rather than being bound to physical ad-
dresses. At runtime MOSAIC will bind (or rebind) the up-
per layer’s logical address to the underlay address. These
bindings are stored in a separate table that can be updated to
facilitate dynamic changes to layering.

MOSAIC allows the control plane of one overlay network
to layer over another overlay’s control plane, accessing its
internal state. Here, each overlay exports the state of its com-
posable components, in the form of database logical views
(query results presented as a named table). An example of
such state is a distributed hash table’s contents, which can be
modeled as a relation with tuples associating keys and val-
ues. Importantly, accessing a neighboring protocol’s state
can be done within the overlays’ specification language —
there is no “impedance mismatch” between languages, and
interoperability issues are minimal.

3.3.2 Bridging
Depending on requirements, bridging can be done either

pre-configured or on-demand in MOSAIC.
Pre-configured method. The composition server receives
a composition specification that involves bridging multiple
overlays, and then creates forwarding state on designated
gateways (either explicitly indicated in the specifications, or
chosen by the composition server) based on the bridge con-
nectors indicated in the composition specifications. When a
sender sends a packet whose destination contains an address
of an overlay in which the sender does not participate, MO-
SAIC routes the packet to the gateway, which then continues
to forward the packet along the bridged overlay. In addition
to a static gateway, the sender can also use a pre-configured
anycast service [9, 6] to select and route packets to one of the
overlay nodes, preferably close in terms of network distance
to the sender.
On-demand method. The sender queries the composition
server for designated gateways among different overlays, and
then utilizes source routing to explicitly describe the data
path. Alternatively, the gateway holds address translation
state that uniquely identifies the flow between the sender and
the receivers, it performs indirection. The on-demand mech-
anism enables user-driven dynamic bridging. We will de-
scribe several examples of such compositions in Section 5.3
using the Mozlog language.

4. THE MOZLOG LANGUAGE
Having described MOSAIC’s basic composition frame-

work, we next present the Mozlog declarative networking
language that is generated from the composition specifica-
tions. As with previous declarative networking languages [14,
13], Mozlog is based on the Datalog [21] recursive query lan-
guage. However, Mozlog extends Datalog in novel ways to
support composition.

As background, each Datalog rule has the form p :- q1,

q2, ..., qn., which can be read informally as “q1 and q2

and ... and qn implies p”. Here, p is the head of the rule,
and q1, q2,...,qn is a list of literals that constitutes the body of
the rule. Literals are either predicates with attributes (which
are bound to variables or constants by the query), or boolean
expressions that involve function symbols (including arith-
metic) applied to attributes. (Predicates in datalog are typ-
ically relations, although in some cases they may represent
functions.)

Datalog rules can refer to one another in a cyclic fashion
to express recursion. The order in which the rules are pre-
sented in a program is semantically immaterial; likewise, the
order predicates appear in a rule is not semantically mean-
ingful. Commas are interpreted as logical conjunctions (AND).
The names of predicates, function symbols, and constants
begin with a lowercase letter, while variable names begin
with an uppercase letter.

Mozlog is a distributed variant of traditional Datalog, pri-
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marily designed for expressing distributed recursive compu-
tations common in network protocols. We illustrate Mozlog
using a simple example of two rules that compute all pairs
of reachable nodes:

r1 reachable@S(S,D):-link@S(S,D).
r2 reachable@S(S,D):-link@S(S,Z), reachable@Z(Z,D).

The rules r1 and r2 specify a distributed transitive clo-
sure computation, where rule r1 computes all pairs of nodes
reachable within a single hop from all input links, and rule r2
expresses that “if there is a link from S to Z, and Z can reach
D, then S can reach D.” By modifying this simple example,
we can construct more complex routing protocols, such as
the distance vector and path vector routing protocols.

Mozlog supports a location specifier in each predicate, ex-
pressed with @ symbol followed by an attribute. This at-
tribute is used to denote the source location of each corre-
sponding tuple. For example, all reachable and link tuples
are stored based on the @S address field. The output of in-
terest is the set of all reachable(S,D) tuples, representing
reachable pairs of nodes from S to D.

In this section, we highlight the Mozlog language itself;
we provide detailed compilation process from composition
specification to Mozlog and use cases in Section 5, and dis-
cuss implementation details in Section 6. We focus first on
key language features necessary to support overlay compo-
sition we then briefly summarize other interesting language
features in Section 4.3.

4.1 Addressing
Mozlog has two distinctive features for addressing nodes

in the network. First, a location specifier is decoupled from
the data tuple so that tuples can be accessed from multiple
logical overlay networks that the host belongs to. Second,
because multiple overlays are selected and composed dy-
namically, location specifiers are not bound to IP addresses
anymore. Each location specifier is associated with a run-
time type which is bound to an overlay.

4.1.1 Decoupling Location from Data
Mozlog predicates have the following syntax:

predicate[@Spec](Attrib1, Attrib2, ..)

In the absence of any location specifier, predicate is as-
sumed to refer to local data. In this case, the rule body is
executed as a cartesian product across all input tables. For
example, in the following rule,
a1 alarm@R(L, N) :- periodic(E, 10), cpuLoad(L),

nodeName(N), monitorServer(R), L>20.

periodic is a built-in local event that will be triggered ev-
ery 10 seconds with a unique identifier E. The predicates
cpuLoad, nodeName, and monitorServer are local tables. The
rule specifies that for every 10 seconds, if the CPU load is
above the threshold 20, an alarm event containing the cur-
rent load L and hostname N will be sent to the monitoring
server R.

Decoupling data from its location enhances interoperabil-
ity and reusability, as well as dynamic re-binding of ad-
dresses. Multiple overlays can interoperate (i.e., exchange
state) by sending network-independent data tuples in a com-
mon data representation. Moreover, since these rules are
rewritten in a location-independent fashion, they can be reused
on different network types (e.g., i3, RON, or IP). Finally,
since it does not bind addresses to data, the language is friendly
to mobility, where host movement (and hence a resulting
change in its IP address) does not invalidate its local tables.

4.1.2 Runtime Types for Location Specifiers
Another Mozlog feature involves adding support for run-

time types to location specifiers. This feature is necessary for
dynamically composing multiple overlays at runtime. Loca-
tion specifiers are denoted by an [oID::]nID element, where
oID is an optional overlay identifier, and nID is a manda-
tory overlay node identifier. For example, consider i3 and
RON overlays with identifiers i3 oid and ron oid respec-
tively. i3 oid::0x123456789I denotes an i3 node with iden-
tifier 0x123456789I, and ron oid::12.34.56.78 denotes a
RON node with IP address 12.34.56.78. In the absence of
any overlay identifier, IP is assumed.

At runtime, MOSAIC examines the location specifier of
each tuple and routes it along the appropriate network. To
illustrate the flexibility of our addressing scheme, consider
the CPU load monitoring example from Section 4.1. Rule
a1 can be rewritten as a2, in which the monitoring server R
refers to an i3 key generated as a hash of its name N instead
of an IP address:

a2 alarm@R(L, N) :- periodic(E, 10), cpuLoad(L),
nodeName(N), serverName(SN), L>20,
Key := f_sha1(SN), R:=i3_oid::Key.

4.2 Data and Control Plane Integration
Overlay composition requires the integration of the data

and control planes of multiple overlays. To achieve this,
Mozlog enables declarative specification of the data plane
behavior. Given an overlay oid, oid.send and oid.recv

event predicates specify the data forwarding algorithm. We
will describe how these send and recv events are generated
within the dataflow execution framework later in Section 6.
Focusing on the language feature now, we illustrate this fea-
ture via an example based on the data plane of an RON over-
lay ron oid.

snd ron_oid.send@Next(Dest,Packet) :-
ron_oid.send(Dest, Packet), ron_oid.RT(Dest, Next),
localAddr(Local), Local!=Dest.

rcv ron_oid.recv(Packet) :- ron_oid.send(Dest, Packet),
localAddr(Local), Local==Dest.

The table ron oid.RT denotes the RON routing table. Rule
snd expresses that for all non-local Dest addresses, the data
packet (Packet) is sent along the next hop (Next) which is
determined via a join with RON’s routing table (ron oid.RT)
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using Dest as the join key. These packets are then received
via the rule rcv at node (Dest), which generates a oid.recv(Packet)
event at Dest.

In Mozlog, the send and recv predicates are usually not
directly used by other rules, but rather automatically invoked
by the MOSAIC runtime engine when the location specifier
type of a tuple matches the overlay. As a result, one can
bridge the data planes of different overlays together, or layer
the control plane of one overlay network over the data plane
of another. We provide more details in Section 5.

4.3 Other Language Features
Finally, we briefly present several language features that,

although not directly used in composition, are essential for
rapid development, legacy application support, and code reuse.

Mozlog supports a built-in predicate for tun device access.
The tun predicate has the following schema: tun(IPPacket
[,SrcIP, DestIP, Protocol,TTL]). When MOSAIC receives
an IP packet from /dev/net/tun, a tun tuple is injected into
the dataflow. IPPacket is the whole IP packet including the
header. SrcIP, DestIP, Protocol and TTL are correspond-
ing attributes extracted from the IP header. When tun is
an action generated by the rules, IPPacket will be sent to
/dev/net/tun. Optionally, the IP header is updated based
on the rest of the attributes if given.

The following rules demonstrate the tun predicate:

p2p_tun tun@Peer(Pkt) :- tun(Pkt),
Peer:="12.34.56.78:1086".

i3_tun tun@Peer(Pkt) :- tun(Pkt, Src, Dest),
Key:=f_sha1(Dest), Peer:=i3_oid::Key.

Rule p2p tun sets up a point-to-point UDP tunnel between
the local node and the remote MOSAIC node listening at the
specific address and port. The peer IP is a constant UDP
address. Similarly, rule i3 tun sets up a tunnel via i3. It
uses the SHA-1 hash of the destination tunneling address as
the i3 key.

Mozlog also supports Composable Virtual Views (CViews),
that define rule groups that, when executed together, perform
a specific functionality, such as DHT lookup and network
measurement. CViews promote code reuse and enable func-
tional composition between different overlays. In addition,
CViews abstract details of asynchronous event-driven pro-
gramming. This enhances readability and makes the code
even more concise: the use of CViews reduced the number
of lines in Chord by 8 rules (from 43 to 35). A detailed dis-
cussion of CView is outside the scope of this paper.

5. COMPILING COMPOSITIONS
We now describe how the MOSAIC compiler takes a com-

position specification and generates rules in Mozlog that bridge
and layer the appropriate overlay modules. Compilation takes
an overlay specification of the graph as input (see Appendix
A for a specification corresponding to the graph of Figure 4).
Then the MOSAIC compiler performs the following steps:

1. Confirm that the specification includes gateway nodes
that are shared by both networks to be bridged, or any-
cast services are provided to locate overlay entry nodes.

2. Compute the node membership sets to which each over-
lay module is to be deployed. This includes all nodes
satisfying the physical node constraints discussed in
Section 3.1, which are also members of any underlay
network.

3. Validate that each overlay has member nodes.

4. For each overlay layered over another module, add map-
pings binding each node’s logical address in the current
overlay to a lower-level address in the underlay. (Sec-
tion 5.1.)

5. For each overlay module with a bridge, based on the
specification, add source routing entries to all mem-
ber nodes, specifying either the static address of each
bridged network’s gateway node or the anycast address
with each bridged network’s ID. (Section 5.2.)

5.1 Layering
Layering of a control or data plane over another overlay’s

data plane is achieved through the use of tables describing
bindings from each overlay node to its current runtime un-
derlay address. At each node, each deployed overlay oid

has a table oid.underlay(Addr). It stores a single tuple
containing Addr, which is the current underlay’s runtime ad-
dress used to route packets. Abstracting the bindings into a
table provides a simple mechanism for switching overlays:
MOSAIC can simply update the underlay table — changing
both the underlay protocol and node address as appropriate.

At each node, we additionally maintain a netAddress

(OID,Addr) table that tracks all current addresses of the over-
lays in which the node participates. If a node has a pub-
licly reachable IP address, a default entry is added as (0,

current ip), where 0 is a built-in ID for the Internet. Other
overlay specific addresses are maintained by the correspond-
ing overlay modules.

For example, consider the i3 and RON overlays with iden-
tifiers i3 oid and ron oid respectively. Each i3 address is
the secure hash of the public key as in rule d1, whereas in
RON, the address is a wrap of the underlay address as shown
rule d2:
d1 netAddress(i3_oid, A) :-

i3_oid.publicKey(K), A:=i3_oid::f_sha1(K).
d2 netAddress(ron_oid, A):-

ron_oid.underlay(U), A:=ron_oid::U.

Given a composition specification with layering connec-
tors, Mozlog rules are generated to implement the layering
in an overlay-specific fashion. We illustrate using an exam-
ple where there are two RON overlays, layered over IP and
i3. Based on the specifications, at every node, there are two
instances of RON executing ( ron oid1 and ron oid2), and
one instance of i3 (i3 oid). The following Mozlog rules d3

and d4 are generated to build the two networks:
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d3 ron_oid1.underlay(U):-netAddress(0,U).
d4 ron_oid2.underlay(U):-netAddress(i3_oid,U).

Since ron oid1 utilizes IP for routing, rule d3 takes as
input netAddress(0,U), based on the executing node’s de-
fault IP address. On the other hand, ron oid2 routes over i3,
hence its underlay tuple stores the address of the underlying
i3 oid node retrieved from the local netAddress table.

Note that the layering association is not static. A de-
ployed, running overlay network can switch the underlying
network from one to another by updating its underlay table
entries at runtime. This enables dynamic overlay composi-
tion. We will discuss an example of dynamic switching in
Section 5.3.

We revisit the RON forwarding rules snd and rcv in Sec-
tion 4.2 in the context of layering:
snd ron_oid.send@Next(Dest,Packet) :-

ron_oid.send(Dest, Packet), ron_oid.RT(Dest, Next),
ron_oid.underlay(Local), Local!=Dest.

rcv ron_oid.recv(Packet) :-
ron_oid.send(Dest, Packet),
ron_oid.underlay(Local), Local==Dest.

The local address stored in localAddr is replaced by
underlay(Local), where Local is the current underlay ad-
dress of the overlay ron oid. Note that while the above rules
achieve the same functionality as the previous two rules in
Section 4.2, they are more flexible in allowing packets to
route over underlays that can be switched at runtime.

5.2 Bridging
Language-level support for bridging is accomplished in

either of two ways. First, nodes have a forward(oid,Addr)

table specifying that all packets designated for overlay oid

are to be sent to the designated gateway with address Addr.
MOSAIC routes the packet to that address, and the process
repeats recursively until the gateway is reached; at that point,
the forward table will no longer have an entry, and instead
overlay oid will route the packet according to its own policy.
If Addr is set to a static IP address, this is equivalent to setup
an IP tunnel to the gateway. If Addr is an anycast address,
e.g. oasis oid::oid, the forwarding plane will invoke the
Oasis anycast service to locate the closest oid overlay node
from the current node, and use it to enter the overlay.

Alternatively, source routing can be used. Mozlog sup-
ports a low-level address type of the form sr::[gateway,

dest], which explicitly describes the data path in terms of
logical addresses. All nodes will automatically handle the
forwarding of such messages to the next recipient in the path.

Dynamic location specifiers enable bridging of different
overlays easily. For example, node A is hosted in an internal
network with an internal IP address ip a. Thus its address is
recorded in the netAddress table as (a net id, ip a). Here
a net id is a unique identifier of A’s internal network. Rec-
ognizing that ip a is an internal IP, the composition server
will create a routing path via the gateway node that sits on
both the Internet and the internal net to bridge the two net-
works. The bridged network address is encoded in the source

overlay id address

alice net alice internal ip
br1 sr::[alice gateway ip, alice internal ip]
br2 sr::[ron::alice gateway ip, alice internal ip]

i3 oid i3 oid::alice id

Table 1: netAddress table at Alice

routing format as sr::[ip gw, ip a] and stored in the
netAddress table. If we layer RON over the source rout-
ing address, node A can immediately join a RON network
without a public IP address.

5.3 Composition Examples
We now demonstrate MOSAIC’s ability to support flex-

ible overlay compositions including bridging, layering and
hybrid compositions. We present two examples, one that re-
visits the mobile VoIP example introduced in Section 1, and
a second example that illustrates dynamic composition.

VoIP between Alice and Bob: Consider the example men-
tioned in Section 1. An overlay composition can solve the
problem. Suppose there is a publicly available i3 overlay
network, and Alice uses her gateway node at home to form
a private RON network with Bob and her other friends. Al-
ice and Bob agree on the composition specification shown
in Figure 4. Based on the overlay specification, MOSAIC
generates the Mozlog rules to compose overlays together.

Because Alice and Bob are in symmetric situation, we use
Alice’s side of the story to explain the composition process.
First, at Alice’s gateway, we configure the RON overlay net-
work over IP as:

c1 ron_oid.underlay(ron_oid,A):-netAddress(0,A).

Then we use bridging to create publicly reachable ad-
dresses br1 and br2 as shown in Table 1. br1 bridges the
internal network AliceNet with the public IP network, and
br2 bridges AliceNet with the RON network.

Finally, we layer i3 over the bridged networks we create.
Because Alice wants to have reliability for VoIP, we choose
the bridging overlay with BR2 as i3’s underlay. The compo-
sition rules deployed at the Alice node is as follows:

c2 i3_oid.underlay(A):-netAddress(br2,A).

When Bob initiates a VoIP call to Alice, he first uses Al-
ice’s i3 ID to look up her public trigger, and sends traffic
to Alice via i3’s indirection path. After they have located
each other, they switch to the i3 shortcut data path as the
underlay network specifies, which is layered on top of RON
and can traverse into internal networks using source routing
along the gateways.

Dynamic Composition of Chord over IP and RON: To
illustrate dynamic composition, we use Chord DHT as an
example to show to benefit of dynamic switching the under-
lying data path from IP to RON. Because temporary network
failures may create non-transitive connectivity between the
nodes in Chord, this may create problems such as invisible
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overlay id address

0 alice gateway ip
alice net alice gw internal ip
ron oid ron oid::alice gateway ip

Table 2: netAddress table at Alice’s gateway

nodes, routing loops and broken return paths [7]. Instead
of fixing the DHT protocol, an alternative is to layer Chord
over a resilient routing protocol such as RON that eliminates
non-transitivity. Layering Chord over RON can be viewed
as trading scalability for performance.

Ch d

Chord

Chord

RON

switchUnderlay (ron_oid)

rule s1

IP

RON

IPswitchUnderlay(0)

rule s1
rule s2

IPswitchUnderlay(0)

Figure 5: Dynamic composition of Chord over two dif-
ferent underlays (IP and RON).

The following rules defines two type of layering: Chord
over IP and Chord over RON (See Figure 5 for the graphical
illustration).

s1 chord_oid.underlay(A):- netAddress(OID,A),
switchUnderlay(OID).

s2 ron_oid.underlay(A):- netAddress(0,A).

In s1-s2, we added a switchUnderlay(OID) predicate to
switch Chord’s underlay to that indicated by the OID vari-
able. This switchUnderlay can itself be triggered by an
event sent from the composition server based on changes to
the overlay specifications submitted by the user. Rule s1 in-
dicates that Chord uses IP as the underlying address when
OID is 0, and RON when OID is ron oid. Rule s2 defaults
RON to use IP at all times. To switch between the two lay-
ering schemes, one only needs to generate switchUnderlay

accordingly.
Dynamic switching is useful because the trade-off between

scalability and performance is at the discretion of the Chord
administrators, who can make decision based on network
conditions, requirements, etc. Unlike restarting Chord from
scratch, dynamic switching preserves existing state in the
network such as the key and value pairs without disrupting
the DHT lookup service. Once the Chord underlay network
address is change on a node, the stabilization process will
propagate it to the node’s successors, predecessor and other
nodes that have it in its finger table. We present our experi-
mental evaluation of this example in Section 7.3.

6. IMPLEMENTATION

The MOSAIC platform uses the P2 [13] declarative net-
working system at its core, but adds significant new func-
tionality. We modified the P2 planner and dataflow engine
to generate execution plans that accommodate new language
features of Mozlog: specifically, those related to runtime
support for dynamic location specifier, data plane forward-
ing, and interactions with legacy applications.

MOSAIC takes a Mozlog program, compiles it into dis-
tributed P2 dataflows [13], and deploys it to all nodes that
participate the overlay. A single node may host multiple
overlay networks at the same time. P2 dataflows resemble
the execution model of the Click modular router [11], which
consists of elements that are connected together to imple-
ment a variety of network and flow control components. In
addition, P2 elements include database operators (such as
joins, aggregation, selections, and projections) that are di-
rectly generated from queries. Each local dataflow partic-
ipates in a global, distributed dataflow across the network,
with messages flowing among elements at different nodes,
resulting in updates to local tables. The local tables store the
state of intermediate and computed query results, including
structures such as routing tables, the state of various network
protocols, and data related to their resulting compositions.
The distributed dataflows implement the operations of vari-
ous network protocols. The flow of messages entering and
leaving the dataflow constitute the network packets gener-
ated during query execution.

6.1 Dataflow Execution

Network In

Mux TimedPullPush 
0Queue

Overlay
Recv 

Unwrap

Receive
Demux

TimedPullPush
0

Round
Robin

LocSpec
Demux

Overlay
Send Wrap

QueueNetwork Out IP

overlay

local

Figure 6: System dataflow & dynamic location specifiers.

Figure 6 shows a typical execution plan generated by com-
piling Mozlog rules. Similar to P2 dataflows, there are sev-
eral network processing elements (denoted by Network In

and Network Out) that connect to individual rule strands (in-
side the gray box) that correspond to compiled database op-
erators. Here, we focus on our modifications, and the in-
terested reader is referred to [13] for details on the dataflow
framework.

To implement dynamic location specifiers and overlay for-
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warding on the data plane, we modify the planner to auto-
matically generate three additional MOSAIC elements shown
in bold in the dataflow: OverlayRecvUnwrap, OverlaySendWrap,
and LocSpecDemux. The elements OverlayRecvUnwrap and
OverlaySendWrap are used for de-encapsulation and encap-
sulation of tuples from overlay traffic.

At the top of the figure, the Mux multiplexes incoming tu-
ples received locally or from the network. These tuples are
processed by the OverlayRecvUnwrap element that will ex-
tract the overlay payload for all tuples of the form overlay.

recv(Packet), where Packet is the payload with type tuple.
Since the payload may be encapsulated by multiple headers
(for layered overlays), this element needs to “unwrap” until
the payload is retrieved. The Packet payload is then used
as input to the dataflow via the ReceiveDemux element, and
used as input to various rule strands for execution.

Executing the rule strands results in the generation of out-
put tuples that are sent to a LocSpecDemux element. This el-
ement checks the runtime type of the location specifier, and
then demultiplexes as follows:

• Tuples tuplename(F1, F2, ..., Fn) are local tuples
and sent to the Mux.

• Tuples tuplename@IPAddr(F1, F2, ..., Fn) are treated
as regular IP-based tuples and sent to the network di-
rectly.

• Tuples tuplename@oid::ovaddr(F1, F2, ..., Fn) are
designated for overlay network oid with address ovaddr.
A new event tuple oid.send(ovaddr, tuplename(F1,

F2, ..., Fn)) which denotes the send primitive of
the overlay network oid is generated (see Section 4.2).
This new tuple is reinserted back to the same dataflow
to be forwarded based on the overlay specification.

6.2 Legacy Support
The tun special predicates for legacy support are treated

differently from ordinary tuples in the dataflow by the plan-
ner. Each special predicate has a rule strand in the dataflow,
between the ReceiveDemux element and the RoundRobin el-
ement(see Figure 6). For tun, two elements Tun::Tx and
Tun::Rx are inserted in the tun rule strand right after Receive-
Demux. Tun::Rx reads IP packets from the tun device, gen-
erates the tun tuple, and sends to the next element in the
rule strand; Tun::Tx receives a tun tuple, formats it to an IP
packet and writes to the tun device.

MOSAIC adopts two mechanisms to support legacy appli-
cations at different layers. At the network layer, we use the
tun device to provide overlay tunnels between legacy appli-
cations. For each end host, it takes a private IP address from
1.0.0.0/8 to avoid conflict from other public IP networks. Af-
ter a legacy application sends a packet to an address in the
tun network, the kernel redirects it to MOSAIC, which gen-
erates a tun tuple. Currently there is an address translation
rule to use a special mapping table to translate the private IP
address to the overlay address. This can be extended to use

test latency(ms) throughput (KByte/s)
DirectIP 0.134 97994

OpenVPN 0.365 7999
MozTun 0.612 7419

RON 1.152 3358
i3 2.08 2023

Table 3: Overhead comparison in LAN

any name resolution service in the future by combining DNS
request hijacking [8]. After address translation, the packet
tunneling rules we described in Section 4.3 deliver the IP
packet to the destination via the corresponding overlays.

To support a legacy overlay that is not implemented in
MOSAIC, we build an adapter for the overlay to interact
with MOSAIC via the send and recv primitives. The adapter
redirects legacy.send tuple from the dataflow to the over-
lay, and inject legacy.recv tuple upon overlay’s packet re-
ception. Because the legacy overlays are built on IP, they
can only be bridged with other overlays or used as substrates
underneath other networks, but cannot be layered on top of
another overlay for either the control or the data plane.

7. EVALUATION
In this section, we present the evaluation of MOSAIC on

a local cluster and on PlanetLab. First, we validate that Mo-
zlog specifications for declarative networks, compositions,
tunneling and packet forwarding are comparable in perfor-
mance to native implementations. Second, we use our imple-
mentation to demonstrate feasibility and functionality, using
actual legacy applications that run unmodified on various
composed overlays using MOSAIC. Third, we evaluate the
dynamic composition capabilities of MOSAIC.

In all our experiments, we make use of a declarative Chord
implementation which consists of 35 rules. Our i3 imple-
mentation uses Chord and adds 16 further rules. We also
implement the RON overlay in 11 rules. Both i3 and RON
can be used by legacy applications via the tun device, as
described in Section 4.3.

7.1 LAN Experiments
To study the overhead of MOSAIC, we measured the la-

tency and TCP throughput between two overlay clients within
the same LAN. The experiment setup was on a local cluster
with eight Pentium IV 2.8GHz PCs with 2GB RAM run-
ning Fedora Core 6 with kernel version 2.6.20, which are
interconnected by high-speed Gigabit Ethernet. While the
local LAN setup and workload is not typical of MOSAIC’s
usage, it allows us to eliminate wide-area dynamic artifacts
that may affect the measurements. We measured the latency
using ping and TCP throughput using iperf.

In the experiments, we use the tun device to provide legacy
application support for network layer overlays. MTU was
reduced to 1250 bytes to avoid fragmentation when headers
were added. The measurement results are shown in Table 3
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for the following test configurations:
DirectIP: Two nodes communicate via direct IP, where iperf
can fully utilize the bandwidth of the Gigabit network. This
serves as an indication of the best latency and throughput
achievable in our LAN.
OpenVPN: OpenVPN [28] 2.0.9 is tunneling software that
uses the tun device. We set up a point-to-point tunnel via
UDP between two cluster nodes and disabled encryption and
compression. The performance results provide a baseline
for the overhead using the tun device virtualization. Com-
pared to DirectIP, the latency increases by more than 0.2ms,
and the TCP throughput drops by a factor of more than 10.
This overhead is inevitable for all overlay networks support-
ing legacy applications using the tun device, including those
hosted on MOSAIC.
MozTun: We set up a static point-to-point tunnel in MO-
SAIC between two cluster nodes. MozTun and OpenVPN
essentially have the same functionality except that MozTun
is implemented in MOSAIC. The additional 7% through-
put overhead of MozTun is solely attributed to the rule pro-
cessing overhead in MOSAIC. Also, the latency increase
of 0.25ms is due to the extra overhead incurred by the P2
dataflow engine, which is negligible when executed over wide-
area networks.
RON: We ran the RON network using MOSAIC and utilize
two nodes to run the measurements. Since RON does not
provide any benefit in our LAN setting with no failures, the
comparison to MozTun is used to show the extra overhead
for rule processing in our implementation.
i3: Six nodes were set up as i3 servers, using Chord to pro-
vide lookup functionality. The remaining two nodes were
selected as i3 clients. A packet sent by the source i3 client
to the destination i3 client went through the public trigger
of the destination, which was hosted on the i3 server of an-
other cluster node. Since it introduced a level of indirection
plus extra rule processing overhead, i3 added the most cost
among the 5 configurations studied.

In summary, the overhead of MOSAIC is respectable: the
throughput of MOSAIC’s point-to-point tunneling (MozTun)
is comparable to that obtained by using well-known tunnel-
ing software (OpenVPN). In the extreme case (level of in-
direction of i3 with tunneling), the extra latency (2ms) in-
curred is negligible for an application running on wide-area
networks. Later, in Section 7.2, we will validate the perfor-
mance of a composed overlay on the Planetlab testbed.

7.2 Wide-area Composition Evaluation
We deployed MOSAIC on PlanetLab to understand the

wide-area performance effects of using the system. We pur-
posely chose a composed overlay including i3, RON, source
routing, and tunneling for legacy applications (all imple-
mented within MOSAIC in 69 Mozlog rules) to bring the
Alice example from the introduction and Section 5.3 to a
resolution.

Our experimental setup is as follows. As our end-host,

we used a Linux PC in New Jersey with a high speed cable
modem connection as the gateway node, which performed
NAT for a Thinkpad X31 laptop. The laptop functioned as
our server, using Apache to serve a 21MB file. The file was
downloaded from a machine in Utah with a modified version
of wget that records the download throughput.

These two nodes in New Jersey and Utah, plus three ad-
ditional nodes (two in the east coast, and one in the west
coast), were used to form a private RON network. We fur-
ther selected 44 nodes from PlanetLab, mostly in the US,
to run i3. During the experiment, in order to validate the
functionality of resilient routing provided by RON, we man-
ually injected network failures by changing the firewall rules
on the gateway to block the downloader’s traffic 30 seconds
after wget was started; then we unblocked the traffic after
another 30 seconds. For the purposes of comparison with the
best case scenario, we repeated the same test using direct IP
communication. Note that direct IP loses all the benefits of
our composed overlay (no resilience, NAT, or mobility sup-
port), but achieves the best possible performance. Since our
server was behind a NAT, in the direct IP experiment, we had
to manually set up a TCP port forwarding rule on the gate-
way node to reach the Apache server. We repeated multiple
runs of the experiments and observed no significant differ-
ences.
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Figure 7: Throughput comparison between overlay com-
position in Mosaic vs direct IP connection during net-
work failure. Network failures were injected 30 seconds
after experiment start, and removed after 30 additional
seconds.

Figure 7 shows the throughput of the download over time
for MOSAIC and DirectIP. We make the following obser-
vations. First, MOSAIC’s performance over the wide area
is respectable: Despite implementing the entire composed
overlay (including legacy support for applications using MO-
SAIC) in Mozlog, we incurred only 20% additional over-
head compared to using direct IP, while achieving the bene-
fits of mobility, NAT support and resilient routing. The ma-
jority of the overhead comes from the extra packet headers
for the composed overlay protocols—an overhead that is re-
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paid with significant functionality. Second, with respect to
the functionality of our composed overlay, we were able to
achieve successful downloads from a server behind a NAT
using MOSAIC. In addition, resilient routing was achieved:
Our RON network periodically monitored the link status and
recovered from routing failures. Hence, during the period
where we injected the routing failures, MOSAIC was able
to make a quick recovery from failure, as is shown by the
sustained throughput. On the other hand, DirectIP suffered
a failure (and hence a drop of throughput to zero) during the
30-60 second period. Overall, MOSAIC was able to com-
plete the download in a shorter time despite lower through-
put, due to the resiliency of RON.

7.3 Dynamic Overlay Composition
In our final experiment, we evaluate the dynamic com-

position capabilities of MOSAIC. Our setup consists of an
8-node cluster, where each node has a similar hardware con-
figuration to the setup in Section 7.1.

As a baseline prior to the dynamic switching experiment,
we made static comparisons between two composed net-
works: we executed Chord-over-IP and Chord-over-RON on
our cluster, which consists of the Chord overlay on top of
IP and RON respectively. Our network size is 16, where
each machine executed two instances of the composed over-
lay nodes. In the steady state, each node periodically issues
a lookup request. A lookup is accurate if the results of the
lookup are correct, i.e., the results point to the node whose
key is the closest successor of the lookup key. Based on this
definition, we compute the lookup accuracy rate, which is
the fraction of accurate lookups over the duration of each
experimental run at every 1 minute interval.

Figure 8 shows our evaluation results over a period of 25
minutes, where network failures are injected by changing the
firewall settings in the cluster to drop UDP packets arriving
at selected nodes after 10 minutes, and reestablished after an
additional 10 minutes. During this window period, we ob-
serve that Chord-over-IP immediately suffered from a catas-
trophic reduction in lookup accuracy, which plunged from
100% to less than 10% upon failures, only to recover when
network connectivity was reestablished. The injected fail-
ures created non-transitive connectivity [7] between Chord
nodes, which further exacerbated its lookup failures. On
the other hand, Chord-over-RON continued to sustain high
lookup accuracy even in the face of massive failures, due to
its ability to find alternative routes quickly.

Having compared the composed overlays separately, we
next evaluate MOSAIC’s dynamic switching capability, where
we started with Chord-over-IP, and then switched our com-
position to Chord-over-RON after 7 minutes. This dynamic
switching is achieved by merely changing the underlay ad-
dress of Chord from IP to RON, as described in Section 5.3.
Figure 9 shows the resulting lookup accuracy over a period
of 15 minutes. We observe that during the process of switch-
ing its underlay from IP to RON, Chord continued to sustain
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Figure 8: Lookup accuracy comparison between Chord
over IP and Chord over RON. Network failures are in-
jected 10 minutes after experiment start and removed
after 10 additional minutes.

high lookup accuracy, demonstrating that MOSAIC is able
to performing dynamic switching seamlessly.
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Figure 9: Chord lookup performance during dynamic
underlay network switching from IP to RON.

8. RELATED WORK
Composing a plurality of heterogeneous networks was pro-

posed in Metanet [27], and also examined in Plutarch [5].
Oasis [16] and OCALA [8] provide legacy support for mul-
tiple overlays. Oasis picks the best single overlay for perfor-
mance. OCALA proposes a mechanism to stitch (similar to
MOSAIC’s bridge functionality) multiple overlay networks
at designated gateway nodes to leverage functionalities from
different overlays. In contrast, MOSAIC’s primary focus
is on overlay specification and composition within a sin-
gle framework. Compared to OCALA, MOSAIC’s declar-
ative framework for composing overlays dynamically is a
major step forward compared to the hand-coded approach
of OCALA. In addition, MOSAIC also provides support for
layering in addition to bridging.MOSAIC is not limited to
IP-based networks, supports dynamic composition, and rout-
ing primitives such as unicast and multicast. These bene-
fits result in better extensibility and evolvability of MOSAIC
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over existing composition systems.
One of the goals of MOSAIC is to reduce the complex-

ity of building and deploying network protocols, through
declarative high-level specifications. In a similar spirit, over-
lay network specifications (e.g. P2 [13] and MACEDON [23]),
and network configuration frameworks (e.g. CONMan [3])
aims to achieve similar goals in complementary domains.
CONMan uses a protocol independent configuration frame-
work based on modules and pipes. An interesting area of fu-
ture research is to work towards a unified declarative frame-
work for implementing and configuring networks across all
levels.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we presented MOSAIC, an extensible in-

frastructure that enables not only the specification of new
overlay networks, but also dynamic selection and composi-
tion of such overlays. MOSAIC provides declarative net-
working: it uses a unified declarative language (Mozlog) and
runtime system to enable specification of new overlay net-
works, as well as their composition in both the control and
data planes. We demonstrated MOSAIC’s composition ca-
pabilities via deployment and measurement on both a local
cluster and the PlanetLab testbed, and showed that the per-
formance overhead of MOSAIC is respectable compared to
native implementations, while achieving the benefits of over-
lay composition.

Our research is proceeding in several directions. First, we
are exploring techniques for automatic overlay composition,
given application requirements, overlay properties and con-
straints. Second, building upon our initial language support
for the transport layer, we are exploring adding mechanisms
for extensible transport and session layer overlays [17, 12,
29]. Such extensibility will be useful in the context of mo-
bile computing, and in environments where there is a high
degree of network and device heterogeneity during an appli-
cation session. Finally, we are also exploring better ways to
compose and share at finer granularity, by combining indi-
vidual feature sets from multiple overlays to meet applica-
tion needs.
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Appendix A: Composition Specification
<mosaic>
<bindings>
<subnet>
<name>AliceSubNet</name>
<ip>10.1.1.0</ip><mask>255.255.255.0</mask>

</subnet>
<subnet>
<name>BobSubNet</name>
<ip>10.2.1.0</ip><mask>255.255.255.0</mask>

</subnet>
<node><name>AliceGW</name>
<ip id="AliceSubNet">10.1.1.1</ip>
<ip id="0">123.45.67.8</ip>

</node>
<node> <name>AlicePC</name>
<ip id="AliceSubNet">10.1.1.12</ip>

</node>
<node><name>BobGW</name>
<ip id="0">234.56.78.1</ip>

</node>
</bindings>
<composition>
<module name="AliceNet" type="private">
<constraints>
<subnet>AliceSubnet</subnet>

</constraints>
<gateway>AliceGW</gateway>
<acls>
<user><id>alice</id><admin/><bridge/><route/></user>

</acls>
<link type="bridge">
<module>RON</module><gateway>AliceGW</gateway>

</link>
</module>
<module name="RON" type="overlay">
<constraints>
<include>AliceGW</include> <include>BobGW</include>

</constraints>
<attributes>

<resiliency>redundancy</resiliency>
</attributes>
<code ref="http://www.mosaic-system.net/ron/v1"/>
<acls>
<user><id>alice</id><admin/><bridge/><route/></user>
<user><id>bob</id><route/></user>

</acls>
<link type="bridge">
<module>AliceNet</module><gateway>AliceGW</gateway>

</link>
<link type="bridge">
<module>BobNet</module><gateway>BobGW</gateway>

</link>
</module>
<module name="i3" type="overlay">
<constraints>
<include>AliceGW</include> <include>BobGW</include>

</constraints>
<attributes>
<mobility>nearestClientProxy</mobility>

</attributes>
<code ref="http://www.mosaic-system.net/i3/v1"/>
<gateway></gateway>
<acls>
<user><id>alice</id><admin/><bridge/><route/></user>
<user><id>bob</id><bridge/><route/></user>

</acls>
<link type="layer">
<module>i3</module>

</link>
</module>
<module name="BobNet" type="private">
<constraints>
<subnet>BobSubnet</subnet>

</constraints>
<gateway>BobGW</gateway>
<acls>
<user><id>bob</id><admin/><bridge/><route/></user>

</acls>
<link type="bridge">
<module>RON</module><gateway>BobGW</gateway>

</link>
</module>

</composition>
</mosaic>
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