7 research outputs found

    Characterization of Internet Traffic in UUM Wireless Networks

    Get PDF
    The development in communication technology and the propagation of mobile devices, lightweight, with built-in, high-speed radio access in wireless are making wireless access to the Internet the popular situation rather than a wire line. Whereas, the growth of the wireless network with additional mobile devices in the UUM and increasing number of users led to slow wireless connection. Therefore, understanding the behavior of traffic analysis helps us to develop, manage WLAN technology, and deploy. It help us to apply our workload analysis results to issues in wireless network deployment, such as capacity planning, and potential network optimizations, such as algorithms for load balancing across multiple Access Points (APs) in a wireless network. The trace composes of two parts: firstly, one that connects to the core switch in computer center which is connected with the distribution switches that link the Access Point (APs) with the wireless network at campus, and secondly, another one for the measurement of bulk data transfers and interactive data exchange between two nodes in UUM library, which had been initiated at that time. This thesis investigates the performance network and users' behavior in UUM wireless network

    Undergraduate Data Communications and Networking Projects Using OPNET and Wireshark Software

    No full text
    The national importance of creating “content reflecting cutting edge developments in STEM fields ” has been recognized the National Science Foundation. The National Research Council has also noted that creating engaging laboratory and classroom experiences is a challenge to effective undergraduate education in STEM disciplines. In this paper we present our endeavors to address these issues in the field of computer networks. We discuss our experiences with novel laboratory and classroom projects using OPNET and Wireshark software products in undergraduate networking courses. These laboratories help undergraduate students understand fundamental networking concepts through modeling and simulation of computing systems. We have found that their use enhances student learning and interest in the subject of computer networks

    A comparative study of three ICT network programs using usability testing

    Get PDF
    Thesis (M. Tech. (Information Technology)) -- Central University of technology, Free State, 2013This study compared the usability of three Information and Communication Technology (ICT) network programs in a learning environment. The researcher wanted to establish which program was most adequate from a usability perspective among second-year Information Technology (IT) students at the Central University of Technology (CUT), Free State. The Software Usability Measurement Inventory (SUMI) testing technique can measure software quality from a user perspective. The technique is supported by an extensive reference database to measure a software product’s quality in use and is embedded in an effective analysis and reporting tool called SUMI scorer (SUMISCO). SUMI was applied in a controlled laboratory environment where second-year IT students of the CUT, utilized SUMI as part of their networking subject, System Software 1 (SPG1), to evaluate each of the three ICT network programs. The results, strengths and weaknesses, as well as usability improvements, as identified by SUMISCO, are discussed to determine the best ICT network program from a usability perspective according to SPG1 students

    An investigation into internetworking education

    Get PDF
    Computer network technology and the Internet grew rapidly in recent years. Their growth created a large demand from industry for the development of IT and internetworking professionals. These professionals need to be equipped with both technical hands-on skills and non-technical or soft skills. In order to supply new professionals to the industry, educational institutions need to address these skills training in their curricula. Technical hands-on skills in internetworking education can be emphasised through the practical use of equipment in classrooms. The provision of the networking equipment to the internetworking students is a challenge. Particularly, university students in developing countries may find that this equipment is ineffectively provided by their teaching institutions, because of the expense. Modern online learning tools, such as remote access laboratories, may be used to address this need. However, the provision of such tools will also need to concentrate upon the pedagogical values. In addition, traditional remote access laboratories provide only text-based access, which was originally designed for highly professional use. Novice students may struggle with learning in these virtual environments, especially when the physical equipment is not available locally. Furthermore, non-technical skills or soft skills are social skills that should not be neglected in graduates’ future workplaces. A traditional model of developing soft skills that was used in face-to-face classroom may not be as effective when applied in an online classroom. Research on students’ opinions about their soft skills development during attending internetworking courses is needed to be conducted. In order to address both research needs, this study was focused on two research aspects related to online learning in internetworking education. The first focus was on research into providing a suitable technical learning environment to distance internetworking students. The second focus was on the students’ opinions about their non-technical skills development. To provide a close equivalent of a face-to-face internetworking learning environment to remote students in Thailand, a transformation of a local internetworking laboratory was conducted. A new multimedia online learning environment integrated pedagogically-rich tools such as state model diagrams (SMDs), a real-time video streaming of equipment and a voice communication tool. Mixed research data were gathered from remote online and local student participants. The remote online participants were invited to use the new learning environment developed in this study. Qualitative research data were collected from twelve remote online students after their trial usage. Concurrently, another set of research data were collected from local students asking their opinion about the development of soft skills in the internetworking course. There were sixty six participants in this second set of research data. Although the research data was limited, restricting the researcher’s ability to generalise, it can be concluded that the provision of multimedia tools in an online internetworking learning environment was beneficial to distant students. The superiority of the traditional physical internetworking laboratory cannot be overlooked; however, the remote laboratory could be used as a supplementary self-practice tool. A concrete learning element such as a real-time video stream and diagrams simplified students learning processes in the virtual environment. Faster communication with the remote instructors and the equipment are also critical factors for a remote access network to be successful. However, unlike the face-to-face laboratory, the future challenge of the online laboratory will creating materials which will encourage students to build soft skills in their laboratory sessions

    Investigation and development of a tangible technology framework for highly complex and abstract concepts

    Get PDF
    The ubiquitous integration of computer-supported learning tools within the educational domain has led educators to continuously seek effective technological platforms for teaching and learning. Overcoming the inherent limitations of traditional educational approaches, interactive and tangible computing platforms have consequently garnered increased interest in the pursuit of embedding active learning pedagogies within curricula. However, whilst Tangible User Interface (TUI) systems have been successfully developed to edutain children in various research contexts, TUI architectures have seen limited deployment towards more advanced educational pursuits. Thus, in contrast to current domain research, this study investigates the effectiveness and suitability of adopting TUI systems for enhancing the learning experience of abstract and complex computational science and technology-based concepts within higher educational institutions (HEI)s. Based on the proposal of a contextually apt TUI architecture, the research describes the design and development of eight distinct TUI frameworks embodying innovate interactive paradigms through tabletop peripherals, graphical design factors, and active tangible manipulatives. These computationally coupled design elements are evaluated through summative and formative experimental methodologies for their ability to aid in the effective teaching and learning of diverse threshold concepts experienced in computational science. In addition, through the design and adoption of a technology acceptance model for educational technology (TAM4Edu), the suitability of TUI frameworks in HEI education is empirically evaluated across a myriad of determinants for modelling students’ behavioural intention. In light of the statistically significant results obtained in both academic knowledge gain (μ = 25.8%) and student satisfaction (μ = 12.7%), the study outlines the affordances provided through TUI design for various constituents of active learning theories and modalities. Thus, based on an empirical and pedagogical analyses, a set of design guidelines is defined within this research to direct the effective development of TUI design elements for teaching and learning abstract threshold concepts in HEI adaptations
    corecore