1,413 research outputs found

    Virtual and rapid prototyping of an underactuated space end effector

    Get PDF
    A fast and reliable verification of an initial concept is an important need in the field of mechatronics. Usually, the steps for a successful design require multiple iterations involving a sequence of design phases-the initial one and several improvements-and the tests of the resulting prototypes, in a trial and error scheme. Now a day’s software and hardware tools allow for a faster approach, in which the iterations between design and prototyping are by far reduced, even to just one in favorable situation. This work presents the design, manufacturing and testing of a robotic end effector for space applications, realized through virtual prototyping, followed by rapid prototyping realization. The first process allows realizing a mathematical model of the robotic system that, once all the simulations confirm the effectiveness of the design, can be directly used for the rapid prototyping by means of 3D printing. The workflow and the results of the process are described in detail in this paper, showing the qualitative and quantitative evaluation of the performance of both the virtual end effector and the actual physical robotic hand

    The KIT swiss knife gripper for disassembly tasks: a multi-functional gripper for bimanual manipulation with a single arm

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This work presents the concept of a robotic gripper designed for the disassembly of electromechanical devices that comprises several innovative ideas. Novel concepts include the ability to interchange built-in tools without the need to grasp them, the ability to reposition grasped objects in-hand, the capability of performing classic dual arm manipulation within the gripper and the utilization of classic industrial robotic arms kinematics within a robotic gripper. We analyze state of the art grippers and robotic hands designed for dexterous in-hand manipulation and extract common characteristics and weak points. The presented concept is obtained from the task requirements for disassembly of electromechanical devices and it is then evaluated for general purpose grasping, in-hand manipulation and operations with tools. We further present the CAD design for a first prototype.Peer ReviewedPostprint (author's final draft
    • …
    corecore