research

Virtual and rapid prototyping of an underactuated space end effector

Abstract

A fast and reliable verification of an initial concept is an important need in the field of mechatronics. Usually, the steps for a successful design require multiple iterations involving a sequence of design phases-the initial one and several improvements-and the tests of the resulting prototypes, in a trial and error scheme. Now a day’s software and hardware tools allow for a faster approach, in which the iterations between design and prototyping are by far reduced, even to just one in favorable situation. This work presents the design, manufacturing and testing of a robotic end effector for space applications, realized through virtual prototyping, followed by rapid prototyping realization. The first process allows realizing a mathematical model of the robotic system that, once all the simulations confirm the effectiveness of the design, can be directly used for the rapid prototyping by means of 3D printing. The workflow and the results of the process are described in detail in this paper, showing the qualitative and quantitative evaluation of the performance of both the virtual end effector and the actual physical robotic hand

    Similar works