3,193 research outputs found

    Modal Logics of Topological Relations

    Full text link
    Logical formalisms for reasoning about relations between spatial regions play a fundamental role in geographical information systems, spatial and constraint databases, and spatial reasoning in AI. In analogy with Halpern and Shoham's modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations between regions in topological spaces such as the real plane. We investigate the expressive power and computational complexity of logics obtained in this way. It turns out that our modal logics have the same expressive power as the two-variable fragment of first-order logic, but are exponentially less succinct. The complexity ranges from (undecidable and) recursively enumerable to highly undecidable, where the recursively enumerable logics are obtained by considering substructures of structures induced by topological spaces. As our undecidability results also capture logics based on the real line, they improve upon undecidability results for interval temporal logics by Halpern and Shoham. We also analyze modal logics based on the five RCC5 relations, with similar results regarding the expressive power, but weaker results regarding the complexity

    Undecidability of first-order modal and intuitionistic logics with two variables and one monadic predicate letter

    Full text link
    We prove that the positive fragment of first-order intuitionistic logic in the language with two variables and a single monadic predicate letter, without constants and equality, is undecidable. This holds true regardless of whether we consider semantics with expanding or constant domains. We then generalise this result to intervals [QBL, QKC] and [QBL, QFL], where QKC is the logic of the weak law of the excluded middle and QBL and QFL are first-order counterparts of Visser's basic and formal logics, respectively. We also show that, for most "natural" first-order modal logics, the two-variable fragment with a single monadic predicate letter, without constants and equality, is undecidable, regardless of whether we consider semantics with expanding or constant domains. These include all sublogics of QKTB, QGL, and QGrz -- among them, QK, QT, QKB, QD, QK4, and QS4.Comment: Pre-final version of the paper published in Studia Logica,doi:10.1007/s11225-018-9815-

    Undecidability of the unification and admissibility problems for modal and description logics

    Full text link
    We show that the unification problem `is there a substitution instance of a given formula that is provable in a given logic?' is undecidable for basic modal logics K and K4 extended with the universal modality. It follows that the admissibility problem for inference rules is undecidable for these logics as well. These are the first examples of standard decidable modal logics for which the unification and admissibility problems are undecidable. We also prove undecidability of the unification and admissibility problems for K and K4 with at least two modal operators and nominals (instead of the universal modality), thereby showing that these problems are undecidable for basic hybrid logics. Recently, unification has been introduced as an important reasoning service for description logics. The undecidability proof for K with nominals can be used to show the undecidability of unification for boolean description logics with nominals (such as ALCO and SHIQO). The undecidability proof for K with the universal modality can be used to show that the unification problem relative to role boxes is undecidable for Boolean description logic with transitive roles, inverse roles, and role hierarchies (such as SHI and SHIQ)

    The decision problem of modal product logics with a diagonal, and faulty counter machines

    Get PDF
    In the propositional modal (and algebraic) treatment of two-variable first-order logic equality is modelled by a `diagonal' constant, interpreted in square products of universal frames as the identity (also known as the `diagonal') relation. Here we study the decision problem of products of two arbitrary modal logics equipped with such a diagonal. As the presence or absence of equality in two-variable first-order logic does not influence the complexity of its satisfiability problem, one might expect that adding a diagonal to product logics in general is similarly harmless. We show that this is far from being the case, and there can be quite a big jump in complexity, even from decidable to the highly undecidable. Our undecidable logics can also be viewed as new fragments of first- order logic where adding equality changes a decidable fragment to undecidable. We prove our results by a novel application of counter machine problems. While our formalism apparently cannot force reliable counter machine computations directly, the presence of a unique diagonal in the models makes it possible to encode both lossy and insertion-error computations, for the same sequence of instructions. We show that, given such a pair of faulty computations, it is then possible to reconstruct a reliable run from them

    A decidable quantified fragment of set theory with ordered pairs and some undecidable extensions

    Full text link
    In this paper we address the decision problem for a fragment of set theory with restricted quantification which extends the language studied in [4] with pair related quantifiers and constructs, in view of possible applications in the field of knowledge representation. We will also show that the decision problem for our language has a non-deterministic exponential time complexity. However, for the restricted case of formulae whose quantifier prefixes have length bounded by a constant, the decision problem becomes NP-complete. We also observe that in spite of such restriction, several useful set-theoretic constructs, mostly related to maps, are expressible. Finally, we present some undecidable extensions of our language, involving any of the operators domain, range, image, and map composition. [4] Michael Breban, Alfredo Ferro, Eugenio G. Omodeo and Jacob T. Schwartz (1981): Decision procedures for elementary sublanguages of set theory. II. Formulas involving restricted quantifiers, together with ordinal, integer, map, and domain notions. Communications on Pure and Applied Mathematics 34, pp. 177-195Comment: In Proceedings GandALF 2012, arXiv:1210.202
    corecore