1,244 research outputs found

    Ordered Navigation on Multi-attributed Data Words

    Full text link
    We study temporal logics and automata on multi-attributed data words. Recently, BD-LTL was introduced as a temporal logic on data words extending LTL by navigation along positions of single data values. As allowing for navigation wrt. tuples of data values renders the logic undecidable, we introduce ND-LTL, an extension of BD-LTL by a restricted form of tuple-navigation. While complete ND-LTL is still undecidable, the two natural fragments allowing for either future or past navigation along data values are shown to be Ackermann-hard, yet decidability is obtained by reduction to nested multi-counter systems. To this end, we introduce and study nested variants of data automata as an intermediate model simplifying the constructions. To complement these results we show that imposing the same restrictions on BD-LTL yields two 2ExpSpace-complete fragments while satisfiability for the full logic is known to be as hard as reachability in Petri nets

    Parikh Automata over Infinite Words

    Get PDF

    Synchronizing Deterministic Push-Down Automata Can Be Really Hard

    Get PDF
    The question if a deterministic finite automaton admits a software reset in the form of a so-called synchronizing word can be answered in polynomial time. In this paper, we extend this algorithmic question to deterministic automata beyond finite automata. We prove that the question of synchronizability becomes undecidable even when looking at deterministic one-counter automata. This is also true for another classical mild extension of regularity, namely that of deterministic one-turn push-down automata. However, when we combine both restrictions, we arrive at scenarios with a PSPACE-complete (and hence decidable) synchronizability problem. Likewise, we arrive at a decidable synchronizability problem for (partially) blind deterministic counter automata. There are several interpretations of what synchronizability should mean for deterministic push-down automata. This is depending on the role of the stack: should it be empty on synchronization, should it be always the same or is it arbitrary? For the automata classes studied in this paper, the complexity or decidability status of the synchronizability problem is mostly independent of this technicality, but we also discuss one class of automata where this makes a difference

    Decidable classes of documents for XPath

    Get PDF
    We study the satisfiability problem for XPath over XML documents of bounded depth. We define two parameters, called match width and braid width, that assign a number to any class of documents. We show that for all k, satisfiability for XPath restricted to bounded depth documents with match width at most k is decidable; and that XPath is undecidable on any class of documents with unbounded braid width. We conjecture that these two parameters are equivalent, in the sense that a class of documents has bounded match width iff it has bounded braid width

    Static Analysis for Logic-based Dynamic Programs

    Get PDF
    The goal of dynamic programs as introduced by Patnaik and Immerman (1994) is to maintain the result of a fixed query for an input database which is subject to tuple insertions and deletions. To this end such programs store an auxiliary database whose relations are updated via first-order formulas upon modifications of the input database. One of those auxiliary relations is supposed to store the answer to the query. Several static analysis problems can be associated to such dynamic programs. Is the answer relation of a given dynamic program always empty? Does a program actually maintain a query? That is, is the answer given of the program the same when an input database was reached by two different modification sequences? Even more, is the content of auxiliary relations independent of the modification sequence that lead to an input database? We study the algorithmic properties of those and similar static analysis problems. Since all these problems can easily be seen to be undecidable for full first-order programs, we examine the exact borderline for decidability for restricted programs. Our focus is on restricting the arity of the input databases as well as the auxiliary databases, and to restrict the use of quantifiers

    Highly Undecidable Problems about Recognizability by Tiling Systems

    Get PDF
    to appear in a Special Issue of the journal Fundamenta Informaticae on Machines, Computations and Universality.International audienceAltenbernd, Thomas and Wöhrle have considered acceptance of languages of infinite two-dimensional words (infinite pictures) by finite tiling systems, with usual acceptance conditions, such as the Büchi and Muller ones [1]. It was proved in [9] that it is undecidable whether a Büchi-recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable). We show here that these two decision problems are actually Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and ``highly undecidable". We give the exact degree of numerous other undecidable problems for Büchi-recognizable languages of infinite pictures. In particular, the non-emptiness and the infiniteness problems are Σ11\Sigma^1_1-complete, and the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, are all Π21\Pi^1_2-complete. It is also Π21\Pi^1_2-complete to determine whether a given Büchi recognizable language of infinite pictures can be accepted row by row using an automaton model over ordinal words of length ω2\omega^2

    Synthesis of Data Word Transducers

    Get PDF
    In reactive synthesis, the goal is to automatically generate an implementation from a specification of the reactive and non-terminating input/output behaviours of a system. Specifications are usually modelled as logical formulae or automata over infinite sequences of signals (ω\omega-words), while implementations are represented as transducers. In the classical setting, the set of signals is assumed to be finite. In this paper, we consider data ω\omega-words instead, i.e., words over an infinite alphabet. In this context, we study specifications and implementations respectively given as automata and transducers extended with a finite set of registers. We consider different instances, depending on whether the specification is nondeterministic, universal or deterministic, and depending on whether the number of registers of the implementation is given or not. In the unbounded setting, we show undecidability for both universal and nondeterministic specifications, while decidability is recovered in the deterministic case. In the bounded setting, undecidability still holds for nondeterministic specifications, but can be recovered by disallowing tests over input data. The generic technique we use to show the latter result allows us to reprove some known result, namely decidability of bounded synthesis for universal specifications
    • …
    corecore