99 research outputs found

    Unconstrained estimation of HRV indices after removing respiratory influences from heart rate

    Get PDF
    Objective: This paper proposes an approach to better estimate the sympathovagal balance (SB) and the respiratory sinus arrhythmia (RSA) after separating respiratory influences from the heart rate (HR). Methods: The separation is performed using orthogonal subspace projections and the approach is first tested using simulated HR and respiratory signals with different spectral properties. Then, RSA and SB are estimated during autonomic blockade and stress using the proposed approach and the classical heart rate variability (HRV) analysis. Both real and ECG-derived respiration (EDR) are used and the reliability of the EDR is evaluated. Results: Mean absolute percentage errors lower than 1% were obtained after removing previously known respiratory signals from simulated HR. The proposed indices were able to improve the quantification of SB during autonomic withdrawal. In the stress data, differences ( $p < 0.003 ) among relaxed and stressful phases were found with the proposed approach, using both the real respiration and the EDR, but they disappeared when using the classical HRV. Conclusion: A better assessment of the autonomic nervous system' response to pharmacological blockade and stress can be achieved after removing respiratory influences from HR, and this can be done using either the real respiration or the EDR. Significance: This work can be used to better identify vagal withdrawal and increased sympathetic activation when the classical HRV analysis fails due to the respiratory influences on HR. Furthermore, it can be computed using only the ECG, which is an advantage when developing wearable systems with limited number of sensors

    Quantification of Linear and Nonlinear Cardiorespiratory Interactions under Autonomic Nervous System Blockade

    Get PDF
    This paper proposes a methodology to extract both linear and nonlinear respiratory influences from the heart rate variability (HRV), by decomposing the HRV into a respiratory and a residual component. This methodology is based on least-squares support vector machines (LS-SVM) formulated for nonlinear function estimation. From this decomposition, a better estimation of the respiratory sinus arrhythmia (RSA) and the sympathovagal balance (SB) can be achieved. These estimates are first analyzed during autonomic blockade and an orthostatic maneuver, and then compared against the classical HRV and a model that considers only linear interactions. Results are evaluated using surrogate data analysis and they indicate that the classical HRV and the linear model underestimate the cardiorespiratory interactions. Moreover, the linear and nonlinear interactions appear to be mediated by different control mechanisms. These findings will allow to better assess the ANS and to improve the understanding of the interactions within the cardiorespiratory system

    Enhancing safety in hyperbaric environments through analysis of autonomic nervous system responses: a comparison of dry and humid conditions

    Get PDF
    Diving can have significant cardiovascular effects on the human body and increase the risk of developing cardiac health issues. This study aimed to investigate the autonomic nervous system (ANS) responses of healthy individuals during simulated dives in hyperbaric chambers and explore the effects of the humid environment on these responses. Electrocardiographic- and heart-rate-variability (HRV)-derived indices were analyzed, and their statistical ranges were compared at different depths during simulated immersions under dry and humid conditions. The results showed that humidity significantly affected the ANS responses of the subjects, leading to reduced parasympathetic activity and increased sympathetic dominance. The power of the high-frequency band of the HRV after removing the influence of respiration, PHF⊥¯, and the number of pairs of successive normal-to-normal intervals that differ by more than 50 ms divided by the total number of normal-to-normal intervals, pNN50¯, indices were found to be the most informative in distinguishing the ANS responses of subjects between the two datasets. Additionally, the statistical ranges of the HRV indices were calculated, and the classification of subjects as “normal” or “abnormal” was determined based on these ranges. The results showed that the ranges were effective at identifying abnormal ANS responses, indicating the potential use of these ranges as a reference for monitoring the activity of divers and avoiding future immersions if many indices are out of the normal ranges. The bagging method was also used to include some variability in the datasets’ ranges, and the classification results showed that the ranges computed without proper bagging represent reality and its associated variability. Overall, this study provides valuable insights into the ANS responses of healthy individuals during simulated dives in hyperbaric chambers and the effects of humidity on these responses

    Effect of the Heart Rate Variability Representations on the Quantification of the Cardiorespiratory Interactions during Autonomic Nervous System Blockade

    Get PDF
    The Heart Rate Variability (HRV) is a noninvasive tool to evaluate the activity of the autonomic nervous system. To study the HRV, different mathematical representations can be used. The selection of a representation might have an effect on the evaluation of the mechanisms that modulate the Heart Rate (HR). One of these mechanisms is the Respiratory Sinus Arrhythmia (RSA), i.e. an increased HR during inhalation and a decreased HR during exhalation. Different methods exist to quantify the RSA. A common approach is to calculate the power in the High Frequency (HF, 0.15 - 0.4 Hz) band of the spectrum of the HRV representation. More recently proposed methods use the respiratory signals to estimate the strength of the RSA.This paper studies the effect of the HRV representations on the quantification of the RSA. To this end, an experiment is used in which the sympathetic and parasympathetic branches of the autonomic nervous system are selectively blocked. Three different HRV representations are considered. Afterwards, the strength of the RSA is estimated using three approaches, namely the spectral content in the HF band of the HRV representations, orthogonal subspace projections and a time-frequency representation.The results suggest that the selection of an HRV representation does not have a significant impact on the RSA estimates in a healthy population

    Cardiopulmonary coupling indices to assess weaning readiness from mechanical ventilation

    Get PDF
    The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients’ readiness, there is still around 15–20% of predictive failure rate. This work is a proof of concept focused on adding new value to the prediction of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to estimate the CPC, including Time-Frequency Coherence, Dynamic Mutual Information and Orthogonal Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 9 failed the SBT or needed reintubation –being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters can vary considerably depending on the time at which they are measured. This fact could be attributed to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical differences are found in the proposed CPC parameters when comparing the values of the two groups, and throughout the whole recordings. In addition, differences are greater at night, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest that the traditional measures could be used in combination with the proposed CPC biomarkers to improve weaning readiness

    Cardiopulmonary coupling indices to assess weaning readiness from mechanical ventilation

    Get PDF
    The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients' readiness, there is still around 15-20% of predictive failure rate. This work is a proof of concept focused on adding new value to the prediction of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to estimate the CPC, including Time-Frequency Coherence, Dynamic Mutual Information and Orthogonal Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 9 failed the SBT or needed reintubation -being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters can vary considerably depending on the time at which they are measured. This fact could be attributed to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical differences are found in the proposed CPC parameters when comparing the values of the two groups, and throughout the whole recordings. In addition, differences are greater at night, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest that the traditional measures could be used in combination with the proposed CPC biomarkers to improve weaning readiness

    Autonomic nervous system biomarkers from multi-modal and model-based signal processing in mental health and illness

    Get PDF
    Esta tesis se centra en técnicas de procesado multimodal y basado en modelos de señales para derivar parámetros fisiológicos, es decir, biomarcadores, relacionados con el sistema nervioso autónomo (ANS). El desarrollo de nuevos métodos para derivar biomarcadores de ANS no invasivos en la salud y la enfermedad mental ofrece la posibilidad de mejorar la evaluación del estrés y la monitorización de la depresión. Para este fin, el presente documento se estructura en tres partes principales. En la Parte I, se proporciona unaintroducción a la salud y la enfermedad mental (Cap. 1). Además, se presenta un marco teórico para investigar la etiología de los trastornos mentales y el papel del estrés en la enfermedad mental (Cap. 2). También se destaca la importancia de los biomarcadores no invasivos para la evaluación del ANS, prestando especial atención en la depresión clínica (Cap. 3, 4). En la Parte II, se proporciona el marco metodológico para derivar biomarcadores del ANS. Las técnicas de procesado de señales incluyen el análisis conjunto de la variabilidad del rítmo cardíaco (HRV) y la señal respiratoria (Cap. 6), técnicas novedosas para derivar la señal respiratoria del electrocardiograma (ECG) (Cap. 7) y un análisis robusto que se basa en modelar la forma de ondas del pulso del fotopletismograma (PPG) (Ch. 8). En la Parte III, los biomarcadores del ANS se evalúan en la quantificacióndel estrés (Cap. 9) y en la monitorización de la depresión (Ch. 10).Parte I: La salud mental no solo está relacionada con ese estado positivo de bienestar, en el que un individuo puede enfrentar a las situaciones estresantes de la vida, sino también con la ausencia de enfermedad mental. La enfermedad o trastorno mental se puede definir como un trastorno emocional, cognitivo o conductual que causa un deterioro funcional sustancial en una o más actividades importantes de la vida. Los trastornos mentales más comunes, que muchas veces coexisten, son la ansiedad y el trastorno depresivo mayor (MDD). La enfermedad mental tiene un impacto negativo en la calidad de vida, ya que se asocia con pérdidas considerables en la salud y el funcionamiento, y aumenta ignificativamente el riesgo de una persona de padecer enfermedades ardiovasculares.Un instigador común que subyace a la comorbilidad entre el MDD, la patologíacardiovascular y la ansiedad es el estrés mental. El estrés es común en nuestra vida de rítmo rapido e influye en nuestra salud mental. A corto plazo, ANS controla la respuesta cardiovascular a estímulos estresantes. La regulación de parámetros fisiológicos, como el rítmo cardíaco, la frecuencia respiratoria y la presión arterial, permite que el organismo responda a cambios repentinos en el entorno. Sin embargo, la adaptación fisiológica a un fenómeno ambiental que ocurre regularmente altera los sistemas biológicos involucrados en la respuesta al estrés. Las alteraciones neurobiológicas en el cerebro pueden alterar lafunción del ANS. La disfunción del ANS y los cambios cerebrales estructurales tienen un impacto negativo en los procesos cognitivos, emocionales y conductuales, lo que conduce al desarrollo de una enfermedad mental.Parte II: El desarrollo de métodos novedosos para derivar biomarcadores del ANS no invasivos ofrece la posibilidad de mejorar la evaluacón del estrés en individuos sanos y la disfunción del ANS en pacientes con MDD. El análisis conjunto de varias bioseñales (enfoquemultimodal) permite la cuantificación de interacciones entre sistemas biológicos asociados con ANS, mientras que el modelado de bioseãles y el análisis posterior de los parámetros del modelo (enfoque basado en modelos) permite la cuantificación robusta de cambios en mecanismos fisiológicos relacionados con el ANS. Un método novedoso, quetiene en cuenta los fenómenos de acoplo de fase y frecuencia entre la respiración y las señales de HRV para evaluar el acoplo cardiorrespiratorio no lineal cuadrático se propone en el Cap. 6.3. En el Cap. 7 se proponen nuevas técnicas paramejorar lamonitorización de la respiración. En el Cap. 8, para aumentar la robustez de algunas medidas morfológicas que reflejan cambios en el tonno arterial, se considera el modelado del pulso PPG como una onda principal superpuesta con varias ondas reflejadas.Parte III: Los biomarcadores del ANS se evalúan en la cuantificación de diferentes tipos de estrés, ya sea fisiológico o psicológico, en individuos sanos, y luego, en la monitorización de la depresión. En presencia de estrés mental (Cap. 9.1), inducido por tareas cognitivas, los sujetos sanos muestran un incremento en la frecuencia respiratoria y un mayor número de interacciones no lineales entre la respiración y la seãl de HRV. Esto podría estar asociado con una activación simpática, pero también con una respiración menos regular. En presencia de estrés hemodinámico (Cap. 9.2), inducido por un cambio postural, los sujetos sanos muestran una reducción en el acoplo cardiorrespiratoriono lineal cuadrático, que podría estar relacionado con una retracción vagal. En presencia de estrés térmico (Cap. 9.3), inducido por la exposición a emperaturas ambientales elevadas, los sujetos sanos muestran un aumento del equilibrio simpatovagal. Esto demuestra que los biomarcadores ANS son capaces de evaluar diferentes tipos de estrés y pueden explorarse más en el contexto de la monitorización de la depresión. En el Cap. 10, se evalúan las diferencias en la función del ANS entre elMDD y los sujetos sanos durante un protocolo de estrés mental, no solo con los valores brutos de los biomarcadores del ANS, sino también con los índices de reactividad autónoma, que reflejan la capacidad deun individuo para afrontar con una situación desafiante. Los resultados muestran que la depresión se asocia con un desequilibrio autonómico, que se caracteriza por una mayor actividad simpática y una reducción de la distensibilidad arterial. Los índices de reactividad autónoma cuantificados por cambios, entre etapas de estrés y de recuperación, en los sustitutos de la rigidez arterial, como la pérdida de amplitud de PPG en las ondas reflejadas, muestran el mejor rendimiento en términos de correlación con el grado de la depresión, con un coeficiente de correlación r = −0.5. La correlación negativa implicaque un mayor grado de depresión se asocia con una disminución de la reactividadautónoma. El poder discriminativo de los biomarcadores del ANS se aprecia también por su alto rendimiento diagnóstico para clasificar a los sujetos como MDD o sanos, con una precisión de 80.0%. Por lo tanto, se puede concluir que los biomarcadores del ANS pueden usarse para evaluar el estrés y que la distensibilidad arterial deteriorada podría constituir un biomarcador de salud mental útil en el seguimiento de la depresión.This dissertation is focused on multi-modal and model-based signal processing techniques for deriving physiological parameters, i.e. biomarkers, related to the autonomic nervous system (ANS). The development of novel approaches for deriving noninvasive ANS biomarkers in mental health and illness offers the possibility to improve the assessment of stress and the monitoring of depression. For this purpose, the present document is structured in three main parts. In Part I, an introduction to mental health and illness is provided (Ch. 1). Moreover, a theoretical framework for investigating the etiology of mental disorders and the role of stress in mental illness is presented (Ch. 2). The importance of noninvasive biomarkers for ANS assessment, paying particular attention in clinical depression, is also highlighted (Ch. 3, 4). In Part II, themethodological framework for deriving ANS biomarkers is provided. Signal processing techniques include the joint analysis of heart rate variability (HRV) and respiratory signals (Ch. 6), novel techniques for deriving the respiratory signal from electrocardiogram (ECG) (Ch. 7), and a robust photoplethysmogram(PPG)waveform analysis based on amodel-based approach (Ch. 8). In Part III, ANS biomarkers are evaluated in stress assessment (Ch. 9) and in the monitoring of depression (Ch. 10). Part I:Mental health is not only related to that positive state ofwell-being, inwhich an individual can cope with the normal stresses of life, but also to the absence of mental illness. Mental illness or disorder can be defined as an emotional, cognitive, or behavioural disturbance that causes substantial functional impairment in one or more major life activities. The most common mental disorders, which are often co-occurring, are anxiety and major depressive disorder (MDD). Mental illness has a negative impact on the quality of life, since it is associated with considerable losses in health and functioning, and increases significantly a person’s risk for cardiovascular diseases. A common instigator underlying the co-morbidity between MDD, cardiovascular pathology, and anxiety is mental stress. Stress is common in our fast-paced society and strongly influences our mental health. In the short term, ANS controls the cardiovascular response to stressful stimuli. Regulation of physiological parameters, such as heart rate, respiratory rate, and blood pressure, allows the organism to respond to sudden changes in the environment. However, physiological adaptation to a regularly occurring environmental phenomenon alters biological systems involved in stress response. Neurobiological alterations in the brain can disrupt the function of the ANS. ANS dysfunction and structural brain changes have a negative impact on cognitive, emotional, and behavioral processes, thereby leading to development of mental illness. Part II: The development of novel approaches for deriving noninvasive ANS biomarkers offers the possibility to improve the assessment of stress in healthy individuals and ANS dysfunction in MDD patients. Joint analysis of various biosignals (multi-modal approach) allows for the quantification of interactions among biological systems associated with ANS, while the modeling of biosignals and subsequent analysis of the model’s parameters (model-based approach) allows for the robust quantification of changes in physiological mechanisms related to the ANS. A novel method, which takes into account both phase and frequency locking phenomena between respiration and HRV signals, for assessing quadratic nonlinear cardiorespiratory coupling is proposed in Ch. 6.3. Novel techniques for improving the monitoring of respiration are proposed in Ch. 7. In Ch. 8, to increase the robustness for some morphological measurements reflecting arterial tone changes, the modeling of the PPG pulse as amain wave superposed with several reflected waves is considered. Part III: ANS biomarkers are evaluated in the assessment of different types of stress, either physiological or psychological, in healthy individuals, and then, in the monitoring of depression. In the presence of mental stress (Ch. 9.1), induced by cognitive tasks, healthy subjects show an increment in the respiratory rate and higher number of nonlinear interactions between respiration and HRV signal, which might be associated with a sympathetic activation, but also with a less regular breathing. In the presence of hemodynamic stress (Ch. 9.2), induced by a postural change, healthy subjects show a reduction in strength of the quadratic nonlinear cardiorespiratory coupling, whichmight be related to a vagal withdrawal. In the presence of heat stress (Ch. 9.3), induced by exposure to elevated environmental temperatures, healthy subjects show an increased sympathovagal balance. This demonstrates that ANS biomarkers are able to assess different types of stress and they can be further explored in the context of depression monitoring. In Ch. 10, differences in ANS function between MDD and healthy subjects during a mental stress protocol are assessed, not only with the raw values of ANS biomarkers but also with autonomic reactivity indices, which reflect the ability of an individual to copewith a challenging situation. Results show that depression is associated with autonomic imbalance, characterized by increased sympathetic activity and reduced arterial compliance. Autonomic reactivity indices quantified by changes, from stress to recovery, in arterial stiffness surrogates, such as the PPG amplitude loss in wave reflections, show the best performance in terms of correlation with depression severity, yielding to correlation coefficient r = −0.5. The negative correlation implies that a higher degree of depression is associated with a decreased autonomic reactivity. The discriminative power of ANS biomarkers is supported by their high diagnostic performance for classifying subjects as having MDD or not, yielding to accuracy of 80.0%. Therefore, it can be concluded that ANS biomarkers can be used for assessing stress and that impaired arterial compliance might constitute a biomarker of mental health useful in the monitoring of depression.<br /

    Autonomic response to walk tests is useful for assessing outcome measures in people with multiple sclerosis

    Get PDF
    Objective: The aim of this study was to evaluate the association between changes in the autonomic control of cardiorespiratory system induced by walk tests and outcome measures in people with Multiple Sclerosis (pwMS). Methods: Electrocardiogram (ECG) recordings of 148 people with Relapsing-Remitting MS (RRMS) and 58 with Secondary Progressive MS (SPMS) were acquired using a wearable device before, during, and after walk test performance from a total of 386 periodical clinical visits. A subset of 90 participants repeated a walk test at home. Various MS-related symptoms, including fatigue, disability, and walking capacity were evaluated at each clinical visit, while heart rate variability (HRV) and ECG-derived respiration (EDR) were analyzed to assess autonomic nervous system (ANS) function. Statistical tests were conducted to assess differences in ANS control between pwMS grouped based on the phenotype or the severity of MS-related symptoms. Furthermore, correlation coefficients (r) were calculated to assess the association between the most significant ANS parameters and MS-outcome measures. Results: People with SPMS, compared to RRMS, reached higher mean heart rate (HRM) values during walk test, and larger sympathovagal balance after test performance. Furthermore, pwMS who were able to adjust their HRM and ventilatory values, such as respiratory rate and standard deviation of the ECG-derived respiration, were associated with better clinical outcomes. Correlation analyses showed weak associations between ANS parameters and clinical outcomes when the Multiple Sclerosis phenotype is not taken into account. Blunted autonomic response, in particular HRM reactivity, was related with worse walking capacity, yielding r = 0.36 r = 0.29 (RRMS) and r > 0.5 (SPMS). A positive strong correlation r > 0.7 r > 0.65 between cardiorespiratory parameters derived at hospital and at home was also found. Conclusion: Autonomic function, as measured by HRV, differs according to MS phenotype. Autonomic response to walk tests may be useful for assessing clinical outcomes, mainly in the progressive stage of MS. Participants with larger changes in HRM are able to walk longer distance, while reduced ventilatory function during and after walk test performance is associated with higher fatigue and disability severity scores. Monitoring of disorder severity could also be feasible using ECG-derived cardiac and respiratory parameters recorded with a wearable device at home

    Heart Rate Variability and Exceptional Longevity

    Get PDF
    Centenarians are the paradigm of human extreme longevity and healthy aging, because they have postponed, if not avoided, mayor age-related diseases. The purpose of this study was to investigate potential differences in resting heart rate variability (HRV) between young adults, octogenarians, and centenarians and assess whether HRV variables are predictors of all-cause mortality in centenarians. To this end, three groups of participants: young adults (N = 20; 20.6 ± 2.3 years), octogenarians (N = 18; 84.1 ± 2.6 years), and centenarians (N = 17; 101.9 ± 1.9 years) were monitored for 15 min at rest (seated, without moving or talking) to measure RR intervals, from which HRV was evaluated. Our results showed a clear decrease with age in the main parasympathetic HRV variables, as well as in the standard deviation (SD) of the RR series [SD of normal-to-normal interval (SDNN)] and in low frequency (LF) heart rate (HR) oscillations, although differences between octogenarians and centenarians did not reach statistical significance. In 14 centenarians followed until death, only SDNN showed significant correlation (¿ = 0.536; p = 0.048) with survival prognosis. Additionally, SDNN <19 ms was associated with early mortality (=1 year) in centenarians (Hazard Ratio = 5.72). In conclusion, HRV indices reflecting parasympathetic outflow as well as SDNN and LF all present an age-related reduction, which could be representative of a natural exhaustion of allostatic systems related to age. Moreover, low SDNN values (<19 ms) could be associated with early mortality in centenarians. HRV seems to play a role in exceptional longevity, which could be accounted for by centenarians’ exposome

    A comparative study of ECG-derived respiration in ambulatory monitoring using the single-lead ECG

    Get PDF
    Cardiorespiratory monitoring is crucial for the diagnosis and management of multiple conditions such as stress and sleep disorders. Therefore, the development of ambulatory systems providing continuous, comfortable, and inexpensive means for monitoring represents an important research topic. Several techniques have been proposed in the literature to derive respiratory information from the ECG signal. Ten methods to compute single-lead ECG-derived respiration (EDR) were compared under multiple conditions, including different recording systems, baseline wander, normal and abnormal breathing patterns, changes in breathing rate, noise, and artifacts. Respiratory rates, wave morphology, and cardiorespiratory information were derived from the ECG and compared to those extracted from a reference respiratory signal. Three datasets were considered for analysis, involving a total 59 482 one-min, single-lead ECG segments recorded from 156 subjects. The results indicate that the methods based on QRS slopes outperform the other methods. This result is particularly interesting since simplicity is crucial for the development of ECG-based ambulatory systems
    corecore