4 research outputs found

    The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences

    Get PDF
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines

    The word problem and combinatorial methods for groups and semigroups

    Get PDF
    The subject matter of this thesis is combinatorial semigroup theory. It includes material, in no particular order, from combinatorial and geometric group theory, formal language theory, theoretical computer science, the history of mathematics, formal logic, model theory, graph theory, and decidability theory. In Chapter 1, we will give an overview of the mathematical background required to state the results of the remaining chapters. The only originality therein lies in the exposition of special monoids presented in §1.3, which uni.es the approaches by several authors. In Chapter 2, we introduce some general algebraic and language-theoretic constructions which will be useful in subsequent chapters. As a corollary of these general methods, we recover and generalise a recent result by Brough, Cain & Pfei.er that the class of monoids with context-free word problem is closed under taking free products. In Chapter 3, we study language-theoretic and algebraic properties of special monoids, and completely classify this theory in terms of the group of units. As a result, we generalise the Muller-Schupp theorem to special monoids, and answer a question posed by Zhang in 1992. In Chapter 4, we give a similar treatment to weakly compressible monoids, and characterise their language-theoretic properties. As a corollary, we deduce many new results for one-relation monoids, including solving the rational subset membership problem for many such monoids. We also prove, among many other results, that it is decidable whether a one-relation monoid containing a non-trivial idempotent has context-free word problem. In Chapter 5, we study context-free graphs, and connect the algebraic theory of special monoids with the geometric behaviour of their Cayley graphs. This generalises the geometric aspects of the Muller-Schupp theorem for groups to special monoids. We study the growth rate of special monoids, and prove that a special monoid of intermediate growth is a group

    The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences

    Get PDF
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines
    corecore