2,459 research outputs found

    Uncertainty-Aware Consistency Regularization for Cross-Domain Semantic Segmentation

    Full text link
    Unsupervised domain adaptation (UDA) aims to adapt existing models of the source domain to a new target domain with only unlabeled data. Many adversarial-based UDA methods involve high-instability training and have to carefully tune the optimization procedure. Some non-adversarial UDA methods employ a consistency regularization on the target predictions of a student model and a teacher model under different perturbations, where the teacher shares the same architecture with the student and is updated by the exponential moving average of the student. However, these methods suffer from noticeable negative transfer resulting from either the error-prone discriminator network or the unreasonable teacher model. In this paper, we propose an uncertainty-aware consistency regularization method for cross-domain semantic segmentation. By exploiting the latent uncertainty information of the target samples, more meaningful and reliable knowledge from the teacher model can be transferred to the student model. In addition, we further reveal the reason why the current consistency regularization is often unstable in minimizing the distribution discrepancy. We also show that our method can effectively ease this issue by mining the most reliable and meaningful samples with a dynamic weighting scheme of consistency loss. Experiments demonstrate that the proposed method outperforms the state-of-the-art methods on two domain adaptation benchmarks, i.e.,i.e., GTAV →\rightarrow Cityscapes and SYNTHIA →\rightarrow Cityscapes

    Context-Aware Mixup for Domain Adaptive Semantic Segmentation

    Get PDF
    Unsupervised domain adaptation (UDA) aims to adapt a model of the labeled source domain to an unlabeled target domain. Existing UDA-based semantic segmentation approaches always reduce the domain shifts in pixel level, feature level, and output level. However, almost all of them largely neglect the contextual dependency, which is generally shared across different domains, leading to less-desired performance. In this paper, we propose a novel Context-Aware Mixup (CAMix) framework for domain adaptive semantic segmentation, which exploits this important clue of context-dependency as explicit prior knowledge in a fully end-to-end trainable manner for enhancing the adaptability toward the target domain. Firstly, we present a contextual mask generation strategy by leveraging the accumulated spatial distributions and prior contextual relationships. The generated contextual mask is critical in this work and will guide the context-aware domain mixup on three different levels. Besides, provided the context knowledge, we introduce a significance-reweighted consistency loss to penalize the inconsistency between the mixed student prediction and the mixed teacher prediction, which alleviates the negative transfer of the adaptation, e.g., early performance degradation. Extensive experiments and analysis demonstrate the effectiveness of our method against the state-of-the-art approaches on widely-used UDA benchmarks.Comment: Accepted to IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    Hard-aware Instance Adaptive Self-training for Unsupervised Cross-domain Semantic Segmentation

    Full text link
    The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing the scalability and performance. In this paper, we propose a hard-aware instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality and diversity of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. We further enrich the hard class pseudo-labels with inter-image information through a skillfully designed hard-aware pseudo-label augmentation. Besides, we propose the region-adaptive regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. For the non-pseudo-label region, consistency constraint is also constructed to introduce stronger supervision signals during model optimization. Our method is so concise and efficient that it is easy to be generalized to other UDA methods. Experiments on GTA5 to Cityscapes, SYNTHIA to Cityscapes, and Cityscapes to Oxford RobotCar demonstrate the superior performance of our approach compared with the state-of-the-art methods.Comment: arXiv admin note: text overlap with arXiv:2008.1219

    DACS: Domain Adaptation via Cross-domain Mixed Sampling

    Full text link
    Semantic segmentation models based on convolutional neural networks have recently displayed remarkable performance for a multitude of applications. However, these models typically do not generalize well when applied on new domains, especially when going from synthetic to real data. In this paper we address the problem of unsupervised domain adaptation (UDA), which attempts to train on labelled data from one domain (source domain), and simultaneously learn from unlabelled data in the domain of interest (target domain). Existing methods have seen success by training on pseudo-labels for these unlabelled images. Multiple techniques have been proposed to mitigate low-quality pseudo-labels arising from the domain shift, with varying degrees of success. We propose DACS: Domain Adaptation via Cross-domain mixed Sampling, which mixes images from the two domains along with the corresponding labels and pseudo-labels. These mixed samples are then trained on, in addition to the labelled data itself. We demonstrate the effectiveness of our solution by achieving state-of-the-art results for GTA5 to Cityscapes, a common synthetic-to-real semantic segmentation benchmark for UDA.Comment: This paper has been accepted to WACV202

    Learning with Limited Annotations: A Survey on Deep Semi-Supervised Learning for Medical Image Segmentation

    Full text link
    Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field

    Exploring Feature Representation Learning for Semi-supervised Medical Image Segmentation

    Full text link
    This paper presents a simple yet effective two-stage framework for semi-supervised medical image segmentation. Our key insight is to explore the feature representation learning with labeled and unlabeled (i.e., pseudo labeled) images to enhance the segmentation performance. In the first stage, we present an aleatoric uncertainty-aware method, namely AUA, to improve the segmentation performance for generating high-quality pseudo labels. Considering the inherent ambiguity of medical images, AUA adaptively regularizes the consistency on images with low ambiguity. To enhance the representation learning, we propose a stage-adaptive contrastive learning method, including a boundary-aware contrastive loss to regularize the labeled images in the first stage and a prototype-aware contrastive loss to optimize both labeled and pseudo labeled images in the second stage. The boundary-aware contrastive loss only optimizes pixels around the segmentation boundaries to reduce the computational cost. The prototype-aware contrastive loss fully leverages both labeled images and pseudo labeled images by building a centroid for each class to reduce computational cost for pair-wise comparison. Our method achieves the best results on two public medical image segmentation benchmarks. Notably, our method outperforms the prior state-of-the-art by 5.7% on Dice for colon tumor segmentation relying on just 5% labeled images.Comment: On submission to TM
    • …
    corecore