2,947 research outputs found

    Generating global products of LAI and FPAR from SNPP-VIIRS data: theoretical background and implementation

    Full text link
    Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation have been successfully generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) data since early 2000. As the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard, the Suomi National Polar-orbiting Partnership (SNPP) has inherited the scientific role of MODIS, and the development of a continuous, consistent, and well-characterized VIIRS LAI/FPAR data set is critical to continue the MODIS time series. In this paper, we build the radiative transfer-based VIIRS-specific lookup tables by achieving minimal difference with the MODIS data set and maximal spatial coverage of retrievals from the main algorithm. The theory of spectral invariants provides the configurable physical parameters, i.e., single scattering albedos (SSAs) that are optimized for VIIRS-specific characteristics. The effort finds a set of smaller red-band SSA and larger near-infraredband SSA for VIIRS compared with the MODIS heritage. The VIIRS LAI/FPAR is evaluated through comparisons with one year of MODIS product in terms of both spatial and temporal patterns. Further validation efforts are still necessary to ensure the product quality. Current results, however, imbue confidence in the VIIRS data set and suggest that the efforts described here meet the goal of achieving the operationally consistent multisensor LAI/FPAR data sets. Moreover, the strategies of parametric adjustment and LAI/FPAR evaluation applied to SNPP-VIIRS can also be employed to the subsequent Joint Polar Satellite System VIIRS or other instruments.Accepted manuscrip

    Aerosol Retrievals from Different Polarimeters During the ACEPOL Campaign Using a Common Retrieval Algorithm

    Get PDF
    In this paper, we present aerosol retrieval results from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, which was a joint initiative between NASA and SRON the Netherlands Institute for Space Research. The campaign took place in OctoberNovember 2017 over the western part of the United States. During ACEPOL six different instruments were deployed on the NASA ER-2 high-altitude aircraft, including four multi-angle polarimeters (MAPs): SPEX airborne, the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI), and the Research Scanning Polarimeter (RSP). Also, two lidars participated: the High Spectral Resolution Lidar-2 (HSRL-2) and the Cloud Physics Lidar (CPL). Flights were conducted mainly for scenes with low aerosol load over land, but some cases with higher AOD were also observed. We perform aerosol retrievals from SPEX airborne, RSP (410865 nm range only), and AirMSPI using the SRON aerosol retrieval algorithm and compare the results against AERONET (AErosol RObotic NETwork) and HSRL-2 measurements (for SPEX airborne and RSP). All three MAPs compare well against AERONET for the aerosol optical depth (AOD), with a mean absolute error (MAE) between 0.014 and 0.024 at 440 nm. For the fine-mode effective radius the MAE ranges between 0.021 and 0.028 m. For the comparison with HSRL-2 we focus on a day with low AOD (0.020.14 at 532 nm) over the California Central Valley, Arizona, and Nevada (26 October) as well as a flight with high AOD (including measurements with AOD>1.0 at 532 nm) over a prescribed forest fire in Arizona (9 November). For the day with low AOD the MAEs in AOD (at 532 nm) with HSRL-2 are 0.014 and 0.022 for SPEX and RSP, respectively, showing the capability of MAPs to provide accurate AOD retrievals for the challenging case of low AOD over land. For the retrievals over the smoke plume a reasonable agreement in AOD between the MAPs and HSRL-2 was also found (MAE 0.088 and 0.079 for SPEX and RSP, respectively), despite the fact that the comparison is hampered by large spatial variability in AOD throughout the smoke plume. A good comparison is also found between the MAPs and HSRL-2 for the aerosol depolarization ratio (a measure of particle sphericity), with an MAE of 0.023 and 0.016 for SPEX and RSP, respectively. Finally, SPEX and RSP agree very well for the retrieved microphysical and optical properties of the smoke plume

    Development Of A Deep Neural Network Based Method For Quality Control Of Modis Maiac Aerosol Data For Aerosol Modeling Applications

    Get PDF
    Quality-assured satellite aerosol data have been shown to improve aerosol analysis and forecasts in Chemical Transport Models. However, biases present in the satellite-based aerosol data can also introduce non-negligible uncertainties in the downstream aerosol forecasts and impact model forecast accuracy. Therefore, in this study we evaluated uncertainties in Moderate Imaging Spectroradiometer (MODIS) Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol products and developed a deep neural network (DNN) based method for quality control of Terra and Aqua MODIS MAIAC Aerosol Optical Depth (AOD) data using the version 3 level 2 AErosol RObotic NETwork (AERONET) data as the ground truth. This method is done using 14 years of Aqua MODIS (2002-2016) and 16 years of Terra MODIS (2000-2016) MAIAC data which are collocated with the AERONET observations. The resulting trained network, which is tested on one year of Aqua/Terra data, can detect and significantly reduce noisy retrieval in MAIAC AOD data resulting in an approximate 31%/27% reduction in Root-Mean-Square-Error in Aqua/Terra MODIS MAIAC AOD with an associated 14%/16% data loss. A sensitivity study performed in this effort suggests that reducing the number of output categories and hidden layers can significantly improve performance of the deep neural network in this case. This study suggests that DNN can be used as an effective method for quality control of satellite based AOD data for potential modeling applications
    • …
    corecore