8 research outputs found

    Regularization in neural network optimization via trimmed stochastic gradient descent with noisy label

    Full text link
    Regularization is essential for avoiding over-fitting to training data in neural network optimization, leading to better generalization of the trained networks. The label noise provides a strong implicit regularization by replacing the target ground truth labels of training examples by uniform random labels. However, it may also cause undesirable misleading gradients due to the large loss associated with incorrect labels. We propose a first-order optimization method (Label-Noised Trim-SGD) which combines the label noise with the example trimming in order to remove the outliers. The proposed algorithm enables us to impose a large label noise and obtain a better regularization effect than the original methods. The quantitative analysis is performed by comparing the behavior of the label noise, the example trimming, and the proposed algorithm. We also present empirical results that demonstrate the effectiveness of our algorithm using the major benchmarks and the fundamental networks, where our method has successfully outperformed the state-of-the-art optimization methods

    Learning Nanoscale Motion Patterns of Vesicles in Living Cells

    Get PDF
    Detecting and analyzing nanoscale motion patterns of vesicles, smaller than the microscope resolution (~250 nm), inside living biological cells is a challenging problem. State-of-the-art CV approaches based on detection, tracking, optical flow or deep learning perform poorly for this problem. We propose an integrative approach, built upon physics based simulations, nanoscopy algorithms, and shallow residual attention network to make it possible for the first time to analysis sub-resolution motion patterns in vesicles that may also be of sub-resolution diameter. Our results show state-of-the-art performance, 89% validation accuracy on simulated dataset and 82% testing accuracy on an experimental dataset of living heart muscle cells imaged under three different pathological conditions. We demonstrate automated analysis of the motion states and changed in them for over 9000 vesicles. Such analysis will enable large scale biological studies of vesicle transport and interaction in living cells in the future

    Bayesian Optimization for Probabilistic Programs

    Full text link
    We present the first general purpose framework for marginal maximum a posteriori estimation of probabilistic program variables. By using a series of code transformations, the evidence of any probabilistic program, and therefore of any graphical model, can be optimized with respect to an arbitrary subset of its sampled variables. To carry out this optimization, we develop the first Bayesian optimization package to directly exploit the source code of its target, leading to innovations in problem-independent hyperpriors, unbounded optimization, and implicit constraint satisfaction; delivering significant performance improvements over prominent existing packages. We present applications of our method to a number of tasks including engineering design and parameter optimization

    On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice

    Full text link
    Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model's performance. It often requires deep knowledge of machine learning algorithms and appropriate hyper-parameter optimization techniques. Although several automatic optimization techniques exist, they have different strengths and drawbacks when applied to different types of problems. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization. This survey paper will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively.Comment: 69 Pages, 10 tables, accepted in Neurocomputing, Elsevier. Github link: https://github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithm
    corecore