124 research outputs found

    New Approach for Unambiguous High-Resolution Wide-Swath SAR Imaging

    Get PDF
    The high-resolution wide-swath (HRWS) SAR system uses a small antenna for transmitting waveform and multiple antennas both in elevation and azimuth for receiving echoes. It has the potential to achieve wide spatial coverage and fine azimuth resolution, while it suffers from elevation pattern loss caused by the presence of topographic height and impaired azimuth resolution caused by nonuniform sampling. A new approach for HRWS SAR imaging based on compressed sensing (CS) is introduced. The data after range compression of multiple elevation apertures are used to estimate direction of arrival (DOA) of targets via CS, and the adaptive digital beamforming in elevation is achieved accordingly, which avoids the pattern loss of scan-on-receive (SCORE) algorithm when topographic height exists. The effective phase centers of the system are nonuniformly distributed when displaced phase center antenna (DPCA) technology is adopted, which causes Doppler ambiguities under traditional SAR imaging algorithms. Azimuth reconstruction based on CS can resolve this problem via precisely modeling the nonuniform sampling. Validation with simulations and experiment in an anechoic chamber are presented

    Advanced Concepts for Ultra-Wide-Swath SAR Imaging

    Get PDF
    This paper reviews advanced multi-channel SAR system concepts for the imaging of ultra-wide swaths with high azimuth resolution. Novel system architectures and operational modes are introduced and compared to each other with regard to their performance

    Advanced Synthetic Aperture Radar Based on Digital Beamforming and Waveform Diversity

    Get PDF
    This paper introduces innovative SAR system concepts for the acquisition of high resolution radar images with wide swath coverage from spaceborne platforms. The new concepts rely on the combination of advanced multi-channel SAR front-end architectures with novel operational modes. The architectures differ regarding their implementation complexity and it is shown that even a low number of channels is already well suited to significantly improve the imaging performance and to overcome fundamental limitations inherent to classical SAR systems. The more advanced concepts employ a multidimensional encoding of the transmitted waveforms to further improve the performance and to enable a new class of hybrid SAR imaging modes that are well suited to satisfy hitherto incompatible user requirements for frequent monitoring and detailed mapping. Implementation specific issues will be discussed and examples demonstrate the potential of the new techniques for different remote sensing applications

    Virtual Antenna Array Analysis for MIMO Synthetic Aperture Radars

    Get PDF
    Multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) that employs multiple antennas to transmit orthogonal waveforms and multiple antennas to receive radar echoes is a recently proposed remote sensing concept. It has been shown that MIMO SAR can be used to improve remote sensing system performance. Most of the MIMO SAR research so far focused on signal/data models and corresponding signal processing algorithm. Little work related to MIMO SAR antenna analysis can be found. One of the main advantages of MIMO SAR is that the degrees of freedom can be greatly increased by the concept of virtual antenna array. In this paper, we analyze the virtual antenna array for MIMO SAR high-resolution wide-swath remote sensing applications. The one-dimensional uniform and nonuniform linear antenna arrays are investigated and their application potentials in high-resolution wide-swath remote sensing are introduced. The impacts of nonuniform spatial sampling in the virtual antenna array are analyzed, along with a multichannel filtering-based reconstruction algorithm. Conceptual system and discussions are provided. It is shown that high operation flexibility and reconfigurability can be obtained by utilizing the virtual antenna arrays provided by the MIMO SAR systems, thus enabling a satisfactory remote sensing performance

    An Efficient Polyphase Filter Based Resampling Method for Unifying the PRFs in SAR Data

    Full text link
    Variable and higher pulse repetition frequencies (PRFs) are increasingly being used to meet the stricter requirements and complexities of current airborne and spaceborne synthetic aperture radar (SAR) systems associated with higher resolution and wider area products. POLYPHASE, the proposed resampling scheme, downsamples and unifies variable PRFs within a single look complex (SLC) SAR acquisition and across a repeat pass sequence of acquisitions down to an effective lower PRF. A sparsity condition of the received SAR data ensures that the uniformly resampled data approximates the spectral properties of a decimated densely sampled version of the received SAR data. While experiments conducted with both synthetically generated and real airborne SAR data show that POLYPHASE retains comparable performance to the state-of-the-art BLUI scheme in image quality, a polyphase filter-based implementation of POLYPHASE offers significant computational savings for arbitrary (not necessarily periodic) input PRF variations, thus allowing fully on-board, in-place, and real-time implementation

    Multistatic SAR Imaging: Comparison of Simulation Results and Experimental Data

    Get PDF
    Synthetic aperture radar (SAR) systems in a multistatic configuration are a promising candidate for future Earth observation and reconnaissance radar systems. They overcome the sampling constraints inherent to single-channel SAR systems. Thus, a multistatic SAR system enables the acquisition of high-resolution images while maintaining wide-swath coverage. Employing several small satellites instead of a single large one, a cost-efficient system with graceful degradation characteristics can be envisaged. Additionally, such a constellation or swarm of sensors offers interferometric and tomographic capabilities, which a single-satellite system is not able to provide. This paper shows results of multistatic experiments obtained with TerraSAR-X and TanDEM-X and compares these results with theoretical simulations. The key parameters analyzed are the Doppler spectrum and the azimuth ambiguity suppression

    An improved airborne multichannel SAR imaging method with motion compensation and range-variant channel mismatch correction

    Get PDF
    To obtain a high-resolution and wide-swath image, the azimuth multichannel technique has been widely used in synthetic aperture radar (SAR) systems to overcome the contradiction between the wide swath and high pulse repetition frequency. For a high image quality, channel mismatch correction is an essential step in the multichannel SAR data imaging. However, in the case of airborne multichannel SAR, motion errors will severely degrade the performance of channel mismatch correction. To deal with this problem, this article proposes an improved airborne multichannel SAR imaging method with motion compensation, and range-variant channel mismatch correction. First, motion errors are compensated based on resampling and phase compensation. Then, the time-delay and constant gain-phase errors between channels are estimated and corrected, followed by the range-variant phase error correction based on a novel range-down-sampling method, which reduces the influence of motion errors on the channel mismatch correction significantly. Finally, simulated and real data processing results are used to demonstrate the effectiveness of the proposed method

    Optimized techniques for real-time microwave and millimeter wave SAR imaging

    Get PDF
    Microwave and millimeter wave synthetic aperture radar (SAR)-based imaging techniques, used for nondestructive evaluation (NDE), have shown tremendous usefulness for the inspection of a wide variety of complex composite materials and structures. Studies were performed for the optimization of uniform and nonuniform sampling (i.e., measurement positions) since existing formulations of SAR resolution and sampling criteria do not account for all of the physical characteristics of a measurement (e.g., 2D limited-size aperture, electric field decreasing with distance from the measuring antenna, etc.) and nonuniform sampling criteria supports sampling below the Nyquist rate. The results of these studies demonstrate optimum sampling given design requirements that fully explain resolution dependence on sampling criteria. This work was then extended to manually-selected and nonuniformly distributed samples such that the intelligence of the user may be utilized by observing SAR images being updated in real-time. Furthermore, a novel reconstruction method was devised that uses components of the SAR algorithm to advantageously exploit the inherent spatial information contained in the data, resulting in a superior final SAR image. Furthermore, better SAR images can be obtained if multiple frequencies are utilized as compared to single frequency. To this end, the design of an existing microwave imaging array was modified to support multiple frequency measurement. Lastly, the data of interest in such an array may be corrupted by coupling among elements since they are closely spaced, resulting in images with an increased level of artifacts. A method for correcting or pre-processing the data by using an adaptation of correlation canceling technique is presented as well --Abstract, page iii

    Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts

    Get PDF
    Spaceborne polarimetric SAR interferometry enables quantitative measurements of important bio- and geophysical parameters of the Earth surface on a global scale. We will first give a short review about actual and planned spaceborne SAR missions that can provide the observation space required for the derivation of Pol-InSAR products. This overview includes both repeat pass mission scenarios like ALOS/PalSAR, TerraSAR-L and Radarsat II, as well as single-pass mission scenarios like a fully-polarimetric Interferometric Cartwheel or TanDEM- X. The Pol-InSAR performance of the suggested mission scenarios will then be analysed by introducing the new concept of a phase tube. This concept enables an optimization of the system parameters and a quantitative comparison between different sensor configurations. The performance analysis for the investigated repeat pass mission scenarios reveals that major limitations have to be expected from temporal decorrelation. Some suggestions will be made to alleviate this performance loss by appropriate orbit refinement. Furthermore, important aspects in the design of future Pol-InSAR sensors will be addressed and we demonstrate the potential benefits arising from the use of bi- and multistatic single pass sensor configurations
    • …
    corecore