696 research outputs found

    Autonomous Vehicle Ultrasonic Sensor Vulnerability and Impact Assessment

    Get PDF
    Vehicles today are relying more on technologies to bring about fully autonomous features. The conventional wirings within are being simplified into a network of electronic components, and this network is controlled via advanced sensing of the environment to make decisions in real-time. However, with the heavy reliance on the sensor readings, any inaccurate reading from the sensors could result in decisions that may cause life-threatening incidents. As such, this research focuses on the in-depth assessment of potential vulnerabilities of an important and commonly used obstacle sensing device, which is the ultrasonic sensor, in modern as well as autonomous vehicles. This research will help bring awareness to the car manufacturers and AV researchers so as to mitigate such issues

    Blind Kcholocation

    Get PDF
    A harsh fact that half million of children go blind each year shows that blindness is one of the significant problems that require a comprehensive care. Some people might consider blindness as a sickness which blind people should be pitied and disable to perform by themselves. In other way it might leads blind people to a "life of dependence" which means that they can not do the activities as normal people can do without assist from others. This could be one of the factors that increase the unemployment rate among a blind community. Blind Echolocation is designed to meet the need of an effective way to assist the blind people to live independently with least help from other people. Although a blind person has a visually impaired but he or she still can hear an echoic sound to determine the direction and distance of the obstacles. Therefore the idea of this project is to make use of Ultrasonic Sensor to produce a device which can be a useful navigation aid for the blinds. The goal of the device is to indicate the obstacles in an environment by triggering the alarm

    Bengala de apoio a cegos

    Get PDF
    The biggest struggle that visually impaired and blind people face on their daily basis is the ability to navigate outdoors independently and safely. In order to make the necessary deviations while maintaining the desired course, it is necessary that visually impaired travellers are capable of correctly detect possible hazards or obstacles. Even though the traditional mobility aids such as the guide dog and the white cane have proven to be valuable and effective tools in many mobility tasks, there are still situations where these means are not effective. Therefore, in the last decades, there has been a great investment in the research and development of electronic travel aids. At the University of Aveiro in the years of 2008 and 2009, were also developed two electronic canes which used ultrasounds to detect holes, drop-offs, and steps. However, in both prototypes, it was detected the presence of acoustic coupling of the signal between the emitter and receiver transducers which reduced drastically the efficiency of both devices. Thus, in this master thesis, it is proposed a solution to this issue using 3D printing also known as additive manufacturing. This technology has been growing exponentially in the last years and gaining prominence in several sectors such as industry, engineering, and medicine. In this specific case, it will be utilized to produced several prototypes of supports for the ultrasonic transducers in order to minimize the acoustic coupling.A maior dificuldade que as pessoas cegas e com deficiência visual enfrentam no seu dia-a-dia é serem capazes de se movimentarem de forma independente e segura no exterior. Por forma a serem efetuados os desvios necessários mantendo o trajecto desejado, é necessário que estas consigam detetar correctamente possíveis perigos ou obstáculos. Embora os dispositivos auxiliares de mobilidade tradicionais, como o cão guia e a bengala branca, tenham demonstrado ser ferramentas valiosas e eficazes em diversas situações, ainda existem casos em que estes meios não são eficazes. Por este motivo, durante as últimas décadas tem havido um grande investimento na pesquisa e desenvolvimento de dispositivos auxiliares de mobilidade eletrónicos. Na Universidade de Aveiro nos anos de 2008 e 2009 foram também desenvolvidas duas bengalas eletrónicas que utilizavam ultra-sons para detetar buracos, desníveis e escadas. No entanto, em ambos os protótipos foi detetada a existência de acoplamento acústico de sinal entre o transdutor emissor e o transdutor receptor, o que reduzia drasticamente a eficácia de ambos os dispositivos. Nesta dissertação propõe-se uma solução para este problema usando a impressão 3D também conhecida como manufatura aditiva. Esta tecnologia tem vindo a crescer exponencialmente nos últimos anos e ganhando maior destaque em diversos setores nomeadamente na indústria, engenharia e medicina. Neste caso em específico foi usada para produzir vários protótipos de suportes para os transdutores de ultra-sons por forma a minimizar-se ao máximo o acoplamento acústico.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Coding of spatial and temporal frequency in bat biosonar

    Get PDF
    Fledermäuse senden Ultraschallrufe aus und lauschen auf Echos um sich in ihrer Umgebung zu orientieren und Beute zu jagen. Dank dieser Fähigkeit zur Echoortung sowie zum aktiven Flug haben sich Fledermäuse eine überaus ergiebige ökologische Nische erschlossen, den nächtlichen Luftraum. Ihr "sechster Sinn" hat Fledermäusen also Unabhängigkeit vom Sonnenlicht beschert. Aber inwiefern kann Hören Sehen ersetzen? Die vorliegende Arbeit beschäftigt sich mit der Frage wie Echoortung bestimmte räumliche und zeitliche Parameter der Umgebung verarbeitet. Wenn es um die Wahrnehmung räumlicher Strukturen geht, stehen echoortende Tiere vor einer speziellen Herausforderung. Die Cochlea, das Sinnesepithel des Hör-systems, kann Rauminformation nicht direkt kodieren. Stattdessen muss Rauminformation errechnet werden, über den Vergleich der Signale an beiden Ohren. Im ersten Kapitel dieser Dissertation teste ich die Hypothese, dass Echoortung dennoch Raumfrequenzen heranzieht um ein Bild der Umgebung zu formen. Das Konzept der Raumfrequenz spielte eine entscheidende Rolle in unserem Verständnis von visueller Wahrnehmung. In der vorliegenden Arbeit zeige ich, dass trotz grundlegender mechanistischer Unterschiede zwischen Seh- und und Hörvermögen beide Sinnessysteme Zugang zu Raumfrequenzinformation haben. Sechs Fledermäuse (Phyllostomus discolor) wurden darauf andressiert, eine Oberfläche mit Wellen unter-schiedlicher Raumfrequenz und Tiefe von einer glatten Oberfläche zu unterscheiden. Meine Messungen zeigen dass Fledermäuse viel empfindlicher gegenüber hohen Raumfrequenzen sind als gegenüber niedrigen Raumfrequenzen, d.h. einen sensorischen Hochpassfilter für Raumfrequenz besitzen. Zusätzlich untersuchte ich welche sensorischen Reize den Fledermäusen zur Verfügung stehen um Raumfrequenz zu bewerten. Ich fand heraus, dass diese Reize sich grundlegend von solchen unterscheiden, welche die visuelle Wahrnehmung von Raumfrequenz vermitteln. Während visuelle Raumfrequenzwahrnehmung das Ergebnis feinabge¬stimmter räumlicher Empfindlichkeit der Retinazellen ist, wird Raumfrequenz¬wahrnehmung mit Echoortung durch objektspezifische Reflektionseigenschaften erreicht. Der Nachweis eines Hochpassfilters in der Echoortung von Fledermäusen offenbart funktionelle Gemeinsamkeiten zwischen Sehen und Echoortung, die beiden Systemen Zugang zum Raumprofil der Umgebung ermöglichen und damit der Figur-Grund-Wahrnehmung zugrunde liegen. Diese funktionellen Gemeinsamkeiten, aber mechanistischen Unterschiede machen deutlich, dass ein Sinnessystem-übergreifender Bedarf an räumlicher Umgebungsinformation besteht. Das Gehör brilliert in der Messung winziger Laufzeitunterschiede. Doch wenn es darum geht zeitlichen Änderungen von Echoparametern zu folgen, scheint das Echo-ortungssystem einer typischen Fledermaus im Nachteil. Der Ortungsruf einer frequenzmodulierenden Fledermaus ist zu kurz um einen kompletten Bewegungs¬zyklus abzubilden. Um Bewegung nachzuverfolgen müssen Fledermäuse die Laufzeit-unterschiede ganzer Sequenzen von Ruf-Echo-Paaren vergleichen. Im zweiten und dritten Kapitel der vorliegenden Arbeit quantifizierte ich die Empfindlichkeit von Fledermaus¬echoortung für zeitliche Modulationen verschiedener Echoparameter. Schlagende Insektenflügel erzeugen natürliche Echomodulationen, und zwar gleichzeitig Modulationen von Laufzeit und Lautstärke. Im zweiten Kapitel führe ich eine Methode ein, mit deren Hilfe sich Laufzeit und Lautstärke der Echos unabhängig voneinander manipulieren lassen. Eine akustische virtuelle Realität ermöglicht die separate Untersuchung der Effekte des jeweiligen Parameters auf die Wahrnehmung der Fledermaus. Ich zeige, dass bei der frequenz-modulierenden Fledermaus P. discolor die Empfindlichkeit für Modulationen der Echolaufzeit stark von der Modulationsrate abhängt. Am empfindlichsten waren die Tiere bei Modulationsraten unter 20 Hz und über 50 Hz. Ich zeige, dass Echoortung für Wechselwirkungen zwischen Modulationsrate und Rufrate anfällig ist, ein Phänomen, das ich als einen echoakustischen Wagenradeffekt bezeichne. Weiter zeige ich, dass bei hohen Modulationsraten Doppler-Verzerrungen zusätzliche spektrale und zeitliche Reize herbeiführen, was den Wiederanstieg der Empfindlichkeit bei hohen Modulationsraten erklären kann. Die bedeutet, dass für die weltweit hunderten Arten frequenzmodulierender Fledermäuse Doppler-Verzerrungen eine wichtige Rolle bei der Flügelschlagwahrnehmung spielen könnten. Im dritten Kapitel vertiefe ich meine Untersuchungen zum Thema Empfindlichkeit von Echoortung gegenüber Echomodulationen. Mit Hilfe der virtuellen Realität moduliere ich die Echolautstärke unabhängig von der Echolaufzeit. Ich kann zeigen, dass P. discolor diese Lautstärkemodulationen wahrnehmen kann und dass die Detektionsleistung der Tiere mit der Modulationsrate ansteigt. Ich führe an, dass sich die Wahrnehmung von Lautstärkemodulationen mit Echoortung grundlegend von der Wahrnehmung von Laufzeitmodulationen unterscheidet. Weiter spekuliere ich, dass der Wahrnehmung schneller Lautstärkemodulationen spektrale Reize zu Grunde liegen. In ihrer Gesamtheit liefert die vorliegende Arbeit experimentelle Nachweise zu wichtigen perzeptorischen Prozessen in der Echoortung frequenzmodulierender Fledermäuse. Meine Erkenntnisse zeigen eine Möglichkeit auf, wie Fledermäuse dem vermeintlich unumgänglichen Kompromiss zwischen räumlichem und zeitlichem Auflösungsvermögen entgehen könnten. Damit stelle ich eine Alternative zur traditionellen Sichtweise, dass die sensorischen Einschränkungen des Gehörs automatisch zu geringerer Leistungsfähigkeit führen. Ich lege dar wie divers die Selektionsfaktoren sind, die auf das Echoortungssystem von Fledermäusen einwirken. Diese Dissertation nimmt daher Einfluss auf die Forschungsbereiche Neuroethologie, Verhaltensökologie, Tierphysiologie und Evolution, und kann zur Weiterentwicklung technischen Sonars beitragen.Bats emit ultrasonic cries and listen to the reflected sounds to orient and forage in their environment. The rich ecological niche of nocturnal air space became accessible through bats’ capability of sustained flight and echolocation. Their “sixth sense” gained them autonomy from sunlight, but to what extent can hearing replace vision? This thesis addresses the question how echolocation encodes certain spatial and temporal parameters of the environment. Echolocation poses a challenge to the perception of spatial layouts because the auditory sensory epithelium, the cochlea, does not explicitly encode space like the eye’s retina does; space must be computed by comparing echo cues at both ears. In the first chapter of this thesis, I test the hypothesis that despite this challenge, bat echolocation utilizes the concept of spatial frequency to form perceptual representations of bats’ habitat. Spatial frequency has been crucial to understand visual perception. I show that both sensory systems, echolocation and vision, have access to spatial frequency information despite their fundamental mechanistic differences. I trained six bats (Phyllostomus discolor) to discriminate ripples of different spatial frequencies from a smooth surface and measured echo-acoustic depth-contrast-sensitivity functions. I show that bats are much more sensitive to high spatial frequencies, exemplifying a spatial high-pass filter. Additionally, I evaluated the perceptual cues available to the bats to assess spatial frequency and found them fundamentally different from those in vision. While spatial frequency perception in vision is a result of spatial tuning, starting already in the retina, spatial frequency perception in echolocation is achieved by object-specific reflection properties that determine the perceived echo-acoustic object signature. The demonstration of a high-pass filter in bat echolocation reveals a functional similarity between vision and echolocation, which underlies figure-ground-separation and allows both systems access to the spatial contours in the environment. The functional similarities, yet mechanistic differences, highlight the need for spatial environmental information, independent of sensory system. The auditory system excels in measuring minute differences in echo arrival times. But when it comes to the tracking of changes of echo properties over time, the echolocation system of a typical bat seems to be at a disadvantage. The echolocation call of frequency-modulating bats is too short to track an entire movement cycle. In order to track movement, bats have to compare memorised sequences of call-echo pairs. In the second and third chapters, I quantified the sensitivity of bat echolocation to the temporal modulation of echo parameters. In nature, fluttering insect wings cause echo modulations; the echoes carry modulations in echo delay and in echo amplitude simultaneously. In the second chapter, I introduce an auditory virtual reality where I can manipulate delay independently from amplitude and tease apart the effects of both parameters on perception. I demonstrate that in the frequency-modulating bat Phyllostomus discolor the sensitivity for modulations in echo delay depends on the rate of the modulation, with bats being most sensitive at modulation rates below 20 Hz and above 50 Hz. I show that echolocation is susceptible to interference between call repetition rate and modulation rate. I propose that this phenomenon constitutes an echo-acoustic wagon-wheel effect. I further demonstrate how at high modulation rates sensitivity could be rescued by using spectral and temporal cues introduced by Doppler-distortions. Thus, I present evidence that Doppler distortions may play a crucial role in flutter sensitivity in the hundreds of frequency-modulating bat species worldwide. In the third chapter, I deepen my investigations into the sensitivity of bat echolocation to temporal echo modulations. I use the virtual reality approach to generate modulations in echo amplitude independent from echo delay. I show that Phyllostomus discolor successfully detected these modulations in echo amplitude and that their performance increased with the rate of the modulation. I suggest that amplitude-modulation detection with echolocation differs fundamentally from delay-modulation detection and speculate that the mechanism to detect fast amplitude modulations relies on spectral cues. In summary, this thesis provides experimental evidence on important perceptual processes in the echolocation of frequency-modulating bats. I give a proof-of-principle demonstration offering release from the supposed trade-off between temporal and spatial acuity and challenging the view that the auditory system’s sensory constraints inevitably lead to detrimental echo-acoustic performance. Thereby, my findings highlight the diversity of selective pressures working on the echolocation system of bats. This thesis therefore has implications on the fields of neuroethology, behavioural ecology, animal physiology and evolution, and may contribute to the further development of technical sonar

    Coding of spatial and temporal frequency in bat biosonar

    Get PDF
    Fledermäuse senden Ultraschallrufe aus und lauschen auf Echos um sich in ihrer Umgebung zu orientieren und Beute zu jagen. Dank dieser Fähigkeit zur Echoortung sowie zum aktiven Flug haben sich Fledermäuse eine überaus ergiebige ökologische Nische erschlossen, den nächtlichen Luftraum. Ihr "sechster Sinn" hat Fledermäusen also Unabhängigkeit vom Sonnenlicht beschert. Aber inwiefern kann Hören Sehen ersetzen? Die vorliegende Arbeit beschäftigt sich mit der Frage wie Echoortung bestimmte räumliche und zeitliche Parameter der Umgebung verarbeitet. Wenn es um die Wahrnehmung räumlicher Strukturen geht, stehen echoortende Tiere vor einer speziellen Herausforderung. Die Cochlea, das Sinnesepithel des Hör-systems, kann Rauminformation nicht direkt kodieren. Stattdessen muss Rauminformation errechnet werden, über den Vergleich der Signale an beiden Ohren. Im ersten Kapitel dieser Dissertation teste ich die Hypothese, dass Echoortung dennoch Raumfrequenzen heranzieht um ein Bild der Umgebung zu formen. Das Konzept der Raumfrequenz spielte eine entscheidende Rolle in unserem Verständnis von visueller Wahrnehmung. In der vorliegenden Arbeit zeige ich, dass trotz grundlegender mechanistischer Unterschiede zwischen Seh- und und Hörvermögen beide Sinnessysteme Zugang zu Raumfrequenzinformation haben. Sechs Fledermäuse (Phyllostomus discolor) wurden darauf andressiert, eine Oberfläche mit Wellen unter-schiedlicher Raumfrequenz und Tiefe von einer glatten Oberfläche zu unterscheiden. Meine Messungen zeigen dass Fledermäuse viel empfindlicher gegenüber hohen Raumfrequenzen sind als gegenüber niedrigen Raumfrequenzen, d.h. einen sensorischen Hochpassfilter für Raumfrequenz besitzen. Zusätzlich untersuchte ich welche sensorischen Reize den Fledermäusen zur Verfügung stehen um Raumfrequenz zu bewerten. Ich fand heraus, dass diese Reize sich grundlegend von solchen unterscheiden, welche die visuelle Wahrnehmung von Raumfrequenz vermitteln. Während visuelle Raumfrequenzwahrnehmung das Ergebnis feinabge¬stimmter räumlicher Empfindlichkeit der Retinazellen ist, wird Raumfrequenz¬wahrnehmung mit Echoortung durch objektspezifische Reflektionseigenschaften erreicht. Der Nachweis eines Hochpassfilters in der Echoortung von Fledermäusen offenbart funktionelle Gemeinsamkeiten zwischen Sehen und Echoortung, die beiden Systemen Zugang zum Raumprofil der Umgebung ermöglichen und damit der Figur-Grund-Wahrnehmung zugrunde liegen. Diese funktionellen Gemeinsamkeiten, aber mechanistischen Unterschiede machen deutlich, dass ein Sinnessystem-übergreifender Bedarf an räumlicher Umgebungsinformation besteht. Das Gehör brilliert in der Messung winziger Laufzeitunterschiede. Doch wenn es darum geht zeitlichen Änderungen von Echoparametern zu folgen, scheint das Echo-ortungssystem einer typischen Fledermaus im Nachteil. Der Ortungsruf einer frequenzmodulierenden Fledermaus ist zu kurz um einen kompletten Bewegungs¬zyklus abzubilden. Um Bewegung nachzuverfolgen müssen Fledermäuse die Laufzeit-unterschiede ganzer Sequenzen von Ruf-Echo-Paaren vergleichen. Im zweiten und dritten Kapitel der vorliegenden Arbeit quantifizierte ich die Empfindlichkeit von Fledermaus¬echoortung für zeitliche Modulationen verschiedener Echoparameter. Schlagende Insektenflügel erzeugen natürliche Echomodulationen, und zwar gleichzeitig Modulationen von Laufzeit und Lautstärke. Im zweiten Kapitel führe ich eine Methode ein, mit deren Hilfe sich Laufzeit und Lautstärke der Echos unabhängig voneinander manipulieren lassen. Eine akustische virtuelle Realität ermöglicht die separate Untersuchung der Effekte des jeweiligen Parameters auf die Wahrnehmung der Fledermaus. Ich zeige, dass bei der frequenz-modulierenden Fledermaus P. discolor die Empfindlichkeit für Modulationen der Echolaufzeit stark von der Modulationsrate abhängt. Am empfindlichsten waren die Tiere bei Modulationsraten unter 20 Hz und über 50 Hz. Ich zeige, dass Echoortung für Wechselwirkungen zwischen Modulationsrate und Rufrate anfällig ist, ein Phänomen, das ich als einen echoakustischen Wagenradeffekt bezeichne. Weiter zeige ich, dass bei hohen Modulationsraten Doppler-Verzerrungen zusätzliche spektrale und zeitliche Reize herbeiführen, was den Wiederanstieg der Empfindlichkeit bei hohen Modulationsraten erklären kann. Die bedeutet, dass für die weltweit hunderten Arten frequenzmodulierender Fledermäuse Doppler-Verzerrungen eine wichtige Rolle bei der Flügelschlagwahrnehmung spielen könnten. Im dritten Kapitel vertiefe ich meine Untersuchungen zum Thema Empfindlichkeit von Echoortung gegenüber Echomodulationen. Mit Hilfe der virtuellen Realität moduliere ich die Echolautstärke unabhängig von der Echolaufzeit. Ich kann zeigen, dass P. discolor diese Lautstärkemodulationen wahrnehmen kann und dass die Detektionsleistung der Tiere mit der Modulationsrate ansteigt. Ich führe an, dass sich die Wahrnehmung von Lautstärkemodulationen mit Echoortung grundlegend von der Wahrnehmung von Laufzeitmodulationen unterscheidet. Weiter spekuliere ich, dass der Wahrnehmung schneller Lautstärkemodulationen spektrale Reize zu Grunde liegen. In ihrer Gesamtheit liefert die vorliegende Arbeit experimentelle Nachweise zu wichtigen perzeptorischen Prozessen in der Echoortung frequenzmodulierender Fledermäuse. Meine Erkenntnisse zeigen eine Möglichkeit auf, wie Fledermäuse dem vermeintlich unumgänglichen Kompromiss zwischen räumlichem und zeitlichem Auflösungsvermögen entgehen könnten. Damit stelle ich eine Alternative zur traditionellen Sichtweise, dass die sensorischen Einschränkungen des Gehörs automatisch zu geringerer Leistungsfähigkeit führen. Ich lege dar wie divers die Selektionsfaktoren sind, die auf das Echoortungssystem von Fledermäusen einwirken. Diese Dissertation nimmt daher Einfluss auf die Forschungsbereiche Neuroethologie, Verhaltensökologie, Tierphysiologie und Evolution, und kann zur Weiterentwicklung technischen Sonars beitragen.Bats emit ultrasonic cries and listen to the reflected sounds to orient and forage in their environment. The rich ecological niche of nocturnal air space became accessible through bats’ capability of sustained flight and echolocation. Their “sixth sense” gained them autonomy from sunlight, but to what extent can hearing replace vision? This thesis addresses the question how echolocation encodes certain spatial and temporal parameters of the environment. Echolocation poses a challenge to the perception of spatial layouts because the auditory sensory epithelium, the cochlea, does not explicitly encode space like the eye’s retina does; space must be computed by comparing echo cues at both ears. In the first chapter of this thesis, I test the hypothesis that despite this challenge, bat echolocation utilizes the concept of spatial frequency to form perceptual representations of bats’ habitat. Spatial frequency has been crucial to understand visual perception. I show that both sensory systems, echolocation and vision, have access to spatial frequency information despite their fundamental mechanistic differences. I trained six bats (Phyllostomus discolor) to discriminate ripples of different spatial frequencies from a smooth surface and measured echo-acoustic depth-contrast-sensitivity functions. I show that bats are much more sensitive to high spatial frequencies, exemplifying a spatial high-pass filter. Additionally, I evaluated the perceptual cues available to the bats to assess spatial frequency and found them fundamentally different from those in vision. While spatial frequency perception in vision is a result of spatial tuning, starting already in the retina, spatial frequency perception in echolocation is achieved by object-specific reflection properties that determine the perceived echo-acoustic object signature. The demonstration of a high-pass filter in bat echolocation reveals a functional similarity between vision and echolocation, which underlies figure-ground-separation and allows both systems access to the spatial contours in the environment. The functional similarities, yet mechanistic differences, highlight the need for spatial environmental information, independent of sensory system. The auditory system excels in measuring minute differences in echo arrival times. But when it comes to the tracking of changes of echo properties over time, the echolocation system of a typical bat seems to be at a disadvantage. The echolocation call of frequency-modulating bats is too short to track an entire movement cycle. In order to track movement, bats have to compare memorised sequences of call-echo pairs. In the second and third chapters, I quantified the sensitivity of bat echolocation to the temporal modulation of echo parameters. In nature, fluttering insect wings cause echo modulations; the echoes carry modulations in echo delay and in echo amplitude simultaneously. In the second chapter, I introduce an auditory virtual reality where I can manipulate delay independently from amplitude and tease apart the effects of both parameters on perception. I demonstrate that in the frequency-modulating bat Phyllostomus discolor the sensitivity for modulations in echo delay depends on the rate of the modulation, with bats being most sensitive at modulation rates below 20 Hz and above 50 Hz. I show that echolocation is susceptible to interference between call repetition rate and modulation rate. I propose that this phenomenon constitutes an echo-acoustic wagon-wheel effect. I further demonstrate how at high modulation rates sensitivity could be rescued by using spectral and temporal cues introduced by Doppler-distortions. Thus, I present evidence that Doppler distortions may play a crucial role in flutter sensitivity in the hundreds of frequency-modulating bat species worldwide. In the third chapter, I deepen my investigations into the sensitivity of bat echolocation to temporal echo modulations. I use the virtual reality approach to generate modulations in echo amplitude independent from echo delay. I show that Phyllostomus discolor successfully detected these modulations in echo amplitude and that their performance increased with the rate of the modulation. I suggest that amplitude-modulation detection with echolocation differs fundamentally from delay-modulation detection and speculate that the mechanism to detect fast amplitude modulations relies on spectral cues. In summary, this thesis provides experimental evidence on important perceptual processes in the echolocation of frequency-modulating bats. I give a proof-of-principle demonstration offering release from the supposed trade-off between temporal and spatial acuity and challenging the view that the auditory system’s sensory constraints inevitably lead to detrimental echo-acoustic performance. Thereby, my findings highlight the diversity of selective pressures working on the echolocation system of bats. This thesis therefore has implications on the fields of neuroethology, behavioural ecology, animal physiology and evolution, and may contribute to the further development of technical sonar

    BatVision: Learning to See 3D Spatial Layout with Two Ears

    Full text link
    Many species have evolved advanced non-visual perception while artificial systems fall behind. Radar and ultrasound complement camera-based vision but they are often too costly and complex to set up for very limited information gain. In nature, sound is used effectively by bats, dolphins, whales, and humans for navigation and communication. However, it is unclear how to best harness sound for machine perception. Inspired by bats' echolocation mechanism, we design a low-cost BatVision system that is capable of seeing the 3D spatial layout of space ahead by just listening with two ears. Our system emits short chirps from a speaker and records returning echoes through microphones in an artificial human pinnae pair. During training, we additionally use a stereo camera to capture color images for calculating scene depths. We train a model to predict depth maps and even grayscale images from the sound alone. During testing, our trained BatVision provides surprisingly good predictions of 2D visual scenes from two 1D audio signals. Such a sound to vision system would benefit robot navigation and machine vision, especially in low-light or no-light conditions. Our code and data are publicly available

    Echolocation in humans: an overview

    Get PDF
    Bats and dolphins are known for their ability to use echolocation. They emit bursts of sounds and listen to the echoes that bounce back to detect the objects in their environment. What is not as well-known is that some blind people have learned to do the same thing, making mouth clicks, for example, and using the returning echoes from those clicks to sense obstacles and objects of interest in their surroundings. The current review explores some of the research that has examined human echolocation and the changes that have been observed in the brains of echolocation experts. We also discuss potential applications and assistive technology based on echolocation. Blind echolocation experts can sense small differences in the location of objects, differentiate between objects of various sizes and shapes, and even between objects made of different materials, just by listening to the reflected echoes from mouth clicks. It is clear that echolocation may enable some blind people to do things that are otherwise thought to be impossible without vision, potentially providing them with a high degree of independence in their daily lives and demonstrating that echolocation can serve as an effective mobility strategy in the blind. Neuroimaging has shown that the processing of echoes activates brain regions in blind echolocators that would normally support vision in the sighted brain, and that the patterns of these activations are modulated by the information carried by the echoes. This work is shedding new light on just how plastic the human brain is

    Donald Griffin, 1975

    Get PDF
    Donald R. Griffin. The sensory physiology of animal orientation Lecture delivered February 19, 1975 Posted with permissionhttps://digitalcommons.rockefeller.edu/harvey-lectures/1048/thumbnail.jp

    Fast Chirped Signals for a TDMA Ultrasonic Indoor Positioning System

    Get PDF
    In this paper, a new concept for ultrasonic indoor positioning based on instantaneous frequency of ultrasonic signals is presented. Nonlinear phase characteristics of ultrasonic transducers introduce a frequency deviation in ultrasonic signals. By sweeping at very fast rates, a large spike in the deviation is introduced. The artefacts observable in instantaneous frequency estimations are highly localized and present an opportunity for accurate frequency detection. In order to be useful, the artefacts need to take place within the pulse and have sufficient magnitude for accurate processing. The system consists of a transducer transmitter and receiver pair, which have a center frequency of 40kHz and a bandwidth of 460Hz. In order to incorporate more transmitters, a time-division multiple access (TDMA) scheme is applied to ensure orthogonality of signals. The concept includes four ultrasonic transmitters and a single receiver, which can uniquely identify each transmitter by a distinct signal sweep. Linear chirp signals are used to form narrow pulses and ensure no interference in the TDMA scheme. The received signal is amplified and passed through a phase-locked loop (PLL) to detect the chirp signals. Accurate instantaneous frequency detection can be done on the voltage-controlled oscillator (VCO) of the PLL, which has a narrower bandwidth than the overall signal sweep. The instantaneous frequency estimation methods are largely explored in this work and consider two methods: the Hilbert transform and a zero-crossings method. This work highlights some of the advantages and disadvantages of both methods. Time of flight (ToF) in this system can ultimately be obtained by considering the instantaneous frequency estimations and the time for one particular frequency to be transmitted and received
    • …
    corecore