2,026 research outputs found

    Quasi-selective ultrafilters and asymptotic numerosities

    Get PDF
    We isolate a new class of ultrafilters on N, called "quasi-selective" because they are intermediate between selective ultrafilters and P-points. (Under the Continuum Hypothesis these three classes are distinct.) The existence of quasi-selective ultrafilters is equivalent to the existence of "asymptotic numerosities" for all sets of tuples of natural numbers. Such numerosities are hypernatural numbers that generalize finite cardinalities to countable point sets. Most notably, they maintain the structure of ordered semiring, and, in a precise sense, they allow for a natural extension of asymptotic density to all sequences of tuples of natural numbers.Comment: 27 page

    Ultrafilters maximal for finite embeddability

    Get PDF
    In [1] the authors showed some basic properties of a pre-order that arose in combinatorial number theory, namely the finite embeddability between sets of natural numbers, and they presented its generalization to ultrafilters, which is related to the algebraical and topological structure of the Stone-\v{C}ech compactification of the discrete space of natural numbers. In this present paper we continue the study of these pre-orders. In particular, we prove that there exist ultrafilters maximal for finite embeddability, and we show that the set of such ultrafilters is the closure of the minimal bilateral ideal in the semigroup (\bN,\oplus), namely \overline{K(\bN,\oplus)}. As a consequence, we easily derive many combinatorial properties of ultrafilters in \overline{K(\bN,\oplus)}. We also give an alternative proof of our main result based on nonstandard models of arithmetic

    Ultrafilter spaces on the semilattice of partitions

    Get PDF
    The Stone-Cech compactification of the natural numbers bN, or equivalently, the space of ultrafilters on the subsets of omega, is a well-studied space with interesting properties. If one replaces the subsets of omega by partitions of omega, one can define corresponding, non-homeomorphic spaces of partition ultrafilters. It will be shown that these spaces still have some of the nice properties of bN, even though none is homeomorphic to bN. Further, in a particular space, the minimal height of a tree pi-base and P-points are investigated

    Quasi-selective ultrafilters and asymptotic numerosities

    Get PDF
    We isolate a new class of ultrafilters on N, called “quasi-selective” because they are intermediate between selective ultrafilters and P-points. (Under the Continuum Hypothesis these three classes are distinct.) The existence of quasi-selective ultrafilters is equivalent to the existence of “asymptotic numerosities” for all sets of tuples A ⊆ N^k. Such numerosities are hypernatural numbers that generalize finite cardinalities to countable point sets. Most notably, they maintain the structure of ordered semiring, and, in a precise sense, they allow for a natural extension of asymptotic density to all sets of tuples of natural numbers

    Finite Embeddability of Sets and Ultrafilters

    Get PDF
    A set A of natural numbers is finitely embeddable in another such set B if every finite subset of A has a rightward translate that is a subset of B. This notion of finite embeddability arose in combinatorial number theory, but in this paper we study it in its own right. We also study a related notion of finite embeddability of ultrafilters on the natural numbers. Among other results, we obtain connections between finite embeddability and the algebraic and topological structure of the Stone-Cech compactification of the discrete space of natural numbers. We also obtain connections with nonstandard models of arithmetic.Comment: to appear in Bulletin of the Polish Academy of Sciences, Math Serie
    • …
    corecore