8 research outputs found

    5G Ultra-dense networks with non-uniform Distributed Users

    Full text link
    User distribution in ultra-dense networks (UDNs) plays a crucial role in affecting the performance of UDNs due to the essential coupling between the traffic and the service provided by the networks. Existing studies are mostly based on the assumption that users are uniformly distributed in space. The non-uniform user distribution has not been widely considered despite that it is much closer to the real scenario. In this paper, Radiation and Absorbing model (R&A model) is first adopted to analyze the impact of the non-uniformly distributed users on the performance of 5G UDNs. Based on the R&A model and queueing network theory, the stationary user density in each hot area is investigated. Furthermore, the coverage probability, network throughput and energy efficiency are derived based on the proposed theoretical model. Compared with the uniformly distributed assumption, it is shown that non-uniform user distribution has a significant impact on the performance of UDNs.Comment: 14 pages, 10 figure

    A novel design approach for 5G massive MIMO and NB-IoT green networks using a hybrid Jaya-differential evolution algorithm

    Get PDF
    Our main objective is to reduce power consumption by responding to the instantaneous bit rate demand by the user for 4th Generation (4G) and 5th Generation (5G) Massive MIMO network configurations. Moreover, we present and address the problem of designing green LTE networks with the Internet of Things (IoT) nodes. We consider the new NarrowBand-IoT (NB-IoT) wireless technology that will emerge in current and future access networks. In this context, we apply emerging evolutionary algorithms in the context of green network design. We investigate three different cases to show the performance of the new proposed algorithm, namely the 4G, 5G Massive MIMO, and the NB-IoT technologies. More specifically, we investigate the Teaching-Learning-Optimization (TLBO), the Jaya algorithm, the self-adaptive differential evolution jDE algorithm, and other hybrid algorithms. We introduce a new hybrid algorithm named Jaya-jDE that uses concepts from both Jaya and jDE algorithms in an effective way. The results show that 5G Massive MIMO networks require about 50% less power consumption than the 4G ones, and the NB-IoT in-band deployment requires about 10% less power than guard-band deployment. Moreover, Jaya-jDE emerges as the best algorithm based on the results

    Robust Beamforming Design for Intelligent Reflecting Surface Aided Cognitive Radio Systems with Imperfect Cascaded CSI

    Full text link
    In this paper, intelligent reflecting surface (IRS) is introduced to enhance the network performance of cognitive radio (CR) systems. Specifically, we investigate robust beamforming design based on both bounded channel state information (CSI) error model and statistical CSI error model for primary user (PU)-related channels in IRS-aided CR systems. We jointly optimize the transmit precoding (TPC) at the secondary user (SU) transmitter (ST) and phase shifts at the IRS to minimize the ST's total transmit power subject to the quality of service of SUs, the limited interference imposed on the PU and unit-modulus of the reflective beamforming. Successive convex approximation and sign-definiteness principle are invoked for dealing with these intricate constraints. The non-convex optimization problems are transformed into several convex subproblems and efficient algorithms are proposed. Simulation results verify the efficiency of the proposed algorithms and reveal the impacts of CSI uncertainties on ST's minimum transmit power and feasibility probability of the optimization problems. Simulation results also show that the number of transmit antennas at the ST and the number of phase shifts at the IRS should be carefully chosen to balance the channel realization feasibility rate and the total transmit power.Comment: Submitted to IEEE Journa

    Assessment of socio-techno-economic factors affecting the market adoption and evolution of 5G networks: Evidence from the 5G-PPP CHARISMA project

    Get PDF
    5G networks are rapidly becoming the means to accommodate the complex demands of vertical sectors. The European project CHARISMA is aiming to develop a hierarchical, distributed-intelligence 5G architecture, offering low latency, security, and open access as features intrinsic to its design. Finding its place in such a complex landscape consisting of heterogeneous technologies and devices, requires the designers of the CHARISMA and other similar 5G architectures, as well as other related market actors to take into account the multiple technical, economic and social aspects that will affect the deployment and the rate of adoption of 5G networks by the general public. In this paper, a roadmapping activity identifying the key technological and socio-economic issues is performed, so as to help ensure a smooth transition from the legacy to future 5G networks. Based on the fuzzy Analytical Hierarchy Process (AHP) method, a survey of pairwise comparisons has been conducted within the CHARISMA project by 5G technology and deployment experts, with several critical aspects identified and prioritized. The conclusions drawn are expected to be a valuable tool for decision and policy makers as well as for stakeholders

    Self-Dimensioning and Planning of Small Cell Capacity in Multitenant 5G Networks

    Get PDF
    An important concept in the fifth generation of mobile networks is multitenancy, which allows diverse operators sharing the same wireless infrastructure. To support this feature in conjunction with the challenging performance requirements of future networks, more automated and faster planning of the required radio capacity is needed. Likewise, installing small cells is an effective resource to provide greater performance and capacity to both indoor and outdoor places. This paper proposes a new framework for automated cell planning in multitenant small cell networks. In particular, taking advantage of the available network data, a set of detailed planning specifications over time and space domains are generated in order to meet the contracted capacity by each tenant. Then, the network infrastructure and configuration are updated according to an algorithm that considers different actions such as adding/removing channels and adding or relocating small cells. The simulation results show the effectiveness of various methods to derive the planning specifications depending on the correlation between the tenant's and network's traffic demands

    Cognition-inspired 5G cellular networks: a review and the road ahead

    Get PDF
    Despite the evolution of cellular networks, spectrum scarcity and the lack of intelligent and autonomous capabilities remain a cause for concern. These problems have resulted in low network capacity, high signaling overhead, inefficient data forwarding, and low scalability, which are expected to persist as the stumbling blocks to deploy, support and scale next-generation applications, including smart city and virtual reality. Fifth-generation (5G) cellular networking, along with its salient operational characteristics - including the cognitive and cooperative capabilities, network virtualization, and traffic offload - can address these limitations to cater to future scenarios characterized by highly heterogeneous, ultra-dense, and highly variable environments. Cognitive radio (CR) and cognition cycle (CC) are key enabling technologies for 5G. CR enables nodes to explore and use underutilized licensed channels; while CC has been embedded in CR nodes to learn new knowledge and adapt to network dynamics. CR and CC have brought advantages to a cognition-inspired 5G cellular network, including addressing the spectrum scarcity problem, promoting interoperation among heterogeneous entities, and providing intelligence and autonomous capabilities to support 5G core operations, such as smart beamforming. In this paper, we present the attributes of 5G and existing state of the art focusing on how CR and CC have been adopted in 5G to provide spectral efficiency, energy efficiency, improved quality of service and experience, and cost efficiency. This main contribution of this paper is to complement recent work by focusing on the networking aspect of CR and CC applied to 5G due to the urgent need to investigate, as well as to further enhance, CR and CC as core mechanisms to support 5G. This paper is aspired to establish a foundation and to spark new research interest in this topic. Open research opportunities and platform implementation are also presented to stimulate new research initiatives in this exciting area

    Robust Beamforming Design for Intelligent Reflecting Surface Aided Cognitive Radio Systems with Imperfect Cascaded CSI

    Get PDF
    In this paper, intelligent reflecting surface (IRS) is introduced to enhance the network performance of cognitive radio (CR) systems. Specifically, we investigate robust beamforming design based on both bounded channel state information (CSI) error model and statistical CSI error model for primary user (PU)-related channels in IRS-aided CR systems. We jointly optimize the transmit precoding (TPC) at the secondary user (SU) transmitter (ST) and phase shifts at the IRS to minimize the ST’s total transmit power subject to the quality of service of SUs, the limited interference imposed on the PU and unit-modulus of the reflective beamforming. The successive convex approximation (SCA) method, Schur’s complement, General sign-definiteness principle, inverse Chi-square distribution and penalty convex-concave procedure are invoked for dealing with these intricate constraints. The non-convex optimization problems are transformed into several convex subproblems and efficient algorithms are proposed. Simulation results verify the efficiency of the proposed algorithms and reveal the impacts of CSI uncertainties on ST’s minimum transmit power and feasibility rate of the optimization problems. Simulation results also show that the number of transmit antennas at the ST and the number of phase shifts at the IRS should be carefully chosen to balance the channel realization feasibility rate and the total transmit power
    corecore